
ABSTRACT

Many of the processes that affect dissolved oxygen concen-
trations in the Tualatin River — solubility, sediment oxygen
demand, photosynthesis, respiration, biochemical oxygen
demand, and reaeration — are controlled to some extent by
physical and meteorological factors such as streamflow, air
temperature, and solar radiation. To test the extent of that
control, an artificial neural network model was constructed to
predict dissolved oxygen concentrations in the Tualatin River
at the Oswego Dam using only air temperature, solar radia-
tion, and streamflow as inputs. Hourly dissolved oxygen con-
centrations have been collected at the Oswego Dam since
1991; the available dataset spans more than 10 years.

Feedforward neural network modeling techniques, the most
widely used type, were applied to this dataset. Data were
segregated into calibration, verification, and test subsets.
Two neural network models were constructed in series: the
first model simulated daily mean dissolved oxygen concen-
trations, while the second superimposed the daily periodic
signals. The final calibrated neural network models predicted
the dissolved oxygen concentration with acceptable accu-
racy, producing high correlations between measured and pre-
dicted values (r=0.83, mean absolute error < 0.9 mg/L).

By some measures, neural network model performance was
better than that of a calibrated, mechanistic model of dis-
solved oxygen in the Tualatin River. As expected, however,
dissolved oxygen concentrations affected by factors other
than the physical and meteorological factors used as model
inputs, such as large point-source ammonia releases, were
not predicted well by the neural network model. Neverthe-
less, the neural network model demonstrated potential for
use as a river management and forecasting tool to predict the
effects of flow augmentation and near-term weather condi-
tions on Tualatin River dissolved oxygen concentrations.

FACTORS AFFECTING DISSOLVED OXYGEN

Dissolved oxygen concentrations in the Tualatin River (fig. 1)
are affected by many physical factors and biological pro-
cesses:

• Solubility
• Residence time
• Reaeration
• Algal respiration
• Photosynthesis
• Oxygen consuming reactions (BOD, SOD)

In addition, physical and meteorological factors such as tem-
perature and residence time influence the effects of the bio-
logical processes.

Photosynthesis and respiration affect DO only when sufficient
light energy is available and when streamflow is low enough
(< 8.5 m3/s) to allow sufficient time for the phytoplankton to
grow while in the backwater reach (fig. 2).
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The Tualatin River at Oswego Dam, river mile (RM) 3.4.
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Figure 1. Map of Tualatin River Basin.

CONCLUSIONS

Artificial neural network models were developed to simulate daily
mean and hourly DO concentrations in the Tualatin River at the
Oswego Dam. The DO at that site is affected by its solubility as well
as biological processes such as algal photosynthesis and respira-
tion, sediment oxygen demand, biochemical oxygen demand, and
ammonia nitrification. The effects of these biological processes on
DO, however, are constrained by physical and meteorological fac-
tors such as streamflow, air temperature, and solar radiation. Neural
network and regression models were built to predict DO based on
these factors, using data from May-October of 1991-2000.

• Multiple linear regression models failed to capture the long-term
patterns in the DO data, producing poor results.

• Neural network models were successful in predicting patterns in
the DO data on daily, weekly, and seasonal time scales. Separate
models were used to simulate the low- and high-frequency pat-
terns in the data.

• ANN model performance was good, with mean absolute errors
less than 0.9 mg/L. Approximately 70% of the variation in the DO
data was captured by the final ANN model.

• ANN predictions often were better than those from a USGS pro-
cess-based model of the Tualatin River (not shown). As applied to
the Tualatin River, however, ANN and process-based models have
different purposes. The process-based model is most useful for
providing insight into how the river works, identifying important
processes, and testing the effects of point-sources and manage-
ment strategies. The ANN model has tremendous potential as a
forecasting tool, but yields less insight into the specifics of riverine
processes.

Future work will focus on incorporating these and other ANN models
into real-time water-quality forecasting tools. Such tools will provide
important information to river managers, particularly as they make
decisions regarding the proper level of flow augmentation.
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The Tualatin River’s reservoir-like reach at Stafford, RM 5.5. Lee Falls on the Tualatin River in the Coast Range Mountains.

Tualatin River at Farmington Bridge, RM 33.3.

OBJECTIVES AND APPROACH

The purpose of this study was to determine the extent to which the DO con-
centration in the Tualatin River at the Oswego Dam could be predicted solely
from physical and meteorological measurements such as streamflow, air
temperature, solar radiation, and rainfall, using multiple linear regression and
artificial neural network modeling techniques. If successful, these models
would be used to create a real-time DO forecasting tool.

ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is a mathematical structure designed to
mimic the information processing functions of a network of neurons in the
brain. ANNs are highly parallel systems that process
information through many interconnected units that
respond to inputs through modifiable weights, thresh-
olds, and mathematical transfer functions. Each unit
processes the pattern of activity it receives from other
units, then broadcasts its response to still other units.

ANNs are particularly well suited for:

• large datasets
• complex, nonlinear relations
• pattern recognition

ANNs are able to find and identify complex patterns in
datasets that may not be well described by a set of
known processes or simple mathematical formulae.
They are not constrained by any preconceived algo-
rithms or relations among inputs.

Training an ANN is a mathematical exercise that optimizes all of the ANN’s
weights and threshold values, using some fraction of the available data. Opti-
mization routines can be used to determine the ideal number of units in the
hidden layer and the nature of their transfer functions. ANNs “learn” by
example; as long as the input dataset contains a wide range of the types of
patterns that the ANN will be asked to predict, the model is likely to find those
patterns and successfully use them in its predictions.

Figure 8. Measured and simulated hourly DO concentrations for the summer of 1995 in
the Tualatin River at Oswego Dam. Simulated values were calculated by the final hourly
ANN model (9 inputs, 1 hidden layer with 10 processing units, 1 output).

Figure 5. Correlations and time-lags between low-pass
filtered DO and other low-pass filtered inputs

Figure 4. Typical power spectrums for DO, stream-
flow, air temperature, solar, and rainfall data.

Figure 7. Measured and simulated daily-mean (low-pass) DO con-
centrations for the Tualatin River at Oswego Dam. Simulated values
were calculated by the low-frequency ANN model (8 inputs, 1 hidden
layer with 7 processing units, 1 output).Figure 3. A representation of a 3-layer feedforward artificial neural

network with four inputs, 5 hidden nodes, and one output.

LOW-FREQUENCY (DAILY MEAN) MODELS

Long- and short-term patterns were simulated with separate models
(fig. 6). After optimization, the low-frequency ANN model required only
8 inputs:

• low-pass (lp) filtered data: lp-Q, lp-S, lp-AT
• low-pass filtered data from 12 days ago: lp-Q-12, lp-AT-12
• low-pass filtered & lagged data: lp-S-lag (1.75 days)
• day-of-year, year

where Q, S, and AT stand for streamflow, solar radiation, and air tem-
perature. Time-lagged inputs were calculated as differences.

MULTIPLE LINEAR REGRESSION

Multiple linear regression is a special case ANN model that uses linear
transfer functions and no hidden layers. Patterns in the data, however,
were highly nonlinear and the regression did not perform well (table 1).

ARTIFICIAL NEURAL NETWORK

Optimization yielded an ANN with one hidden layer containing seven
nodes. ANN predictions were markedly better than the linear model
and in many cases better than a USGS process-based model, with a
mean absolute error of only 0.83 mg/L and a correlation coefficient of
0.837 (fig. 7, table 1).

The ANN model captured the most important patterns in the data, pro-
ducing remarkable fits to the measured DO considering that the pre-
dictions were based only on streamflow, air temperature, solar
radiation, year, and day-of-year. The most important predictor vari-
ables were lp-Q, day-of-year, lp-S, and lp-S-lag, respectively.

FINAL HOURLY MODEL

High-frequency signals in the data were separated
from low-frequency signals by subtracting the low-
pass filtered data from the original data. High-pass AT
and S inputs were included at several time lags to
capture their 12- and 24-hour signals; the streamflow
data had no useful high-frequency signals (fig. 4).

Final training and optimization yielded a high-fre-
quency ANN model with nine inputs:

• output from the low-frequency ANN,
• high-pass (hp) filtered AT & S (3 time lags each),
• day-of-year, and year.

The high-frequency ANN used one hidden layer with
10 nodes.

The final model captured both the long-term and daily
patterns in the measured DO data, producing a mean
absolute error of 0.86 mg/L and a correlation coeffi-
cient of 0.831 (table 1).

Figure 8 illustrates the typical daily variations that the
model produced in the final hourly DO. These predic-
tions are accurate enough to be useful and can form
the basis for a real-time DO forecasting tool.
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Figure 2. Favorable streamflow and light conditions are
necessary before sizable algal blooms can occur in the
Tualatin River. Shaded periods are unfavorable for algal
growth due to high flow (red) or low light (blue) condi-
tions.

DATA PREPARATION AND DECORRELATION

To maximize the signals in the input data that will help to
predict the output, it is critical to examine the data for peri-
odicity, cross-correlations, and important time lags.

PERIODICITY

Each parameter’s data were analyzed by Fourier transform
to determine the presence of periodic signals. Solar radia-
tion, air temperature, and DO all had strong periodic signals
at daily time scales; periods of 24 and 12 hours character-
ized the most important signals. Streamflow appeared to
have useful signals at time scales longer than a day or two,
but only weak patterns at shorter time scales. Figure 4 illus-
trates typical power spectrums from these data.

Strong signals at daily time scales can obscure important
correlations and time lags in the data; therefore, the short
and long time scale signals in the data were separated. A
low-pass filter was used to remove the 24-hour and shorter
periodic signals from each time series, preserving any peri-
odic signals at time scales longer than one day.

Long-term patterns and short-term periodicity in the data
were simulated with separate models.

CROSS-CORRELATIONS AND TIME LAGS

Multiple linear regression and ANN techniques work best
with independent inputs. To test for interdependence, the
data were correlated against one another using linear
regression techniques with an imposed time lag (fig. 5).

DO has its highest correlation with the solar insolation rate
that occurred about 2 days previous. That time lag has a
physical basis because the available solar energy affects
the amount of DO produced by photosynthesis, and the
effects of very sunny or very cloudy days on algal growth
are not immediate.

Many of the DO cross-correlations are minimized at a time
lag on the order of 12 days, which is the typical summer
residence time in the backwater reach of the Tualatin River.

Table 1. Goodness-of-fit statistics for models predicting DO at the Oswego Dam. 

Model Type Time Scale

Number
of Data
Points

Mean Absolute 
Error

(mg/L)

Root Mean 
Square Error

(mg/L)

Correlation
Coefficient

(r)

Multiple Linear
Regression

low-frequency 40,388 1.29 1.69 0.589

Artificial Neural
Network (ANN)

low-frequency 40,388 0.83 1.14 0.837

final hourly 40,372 0.86 1.21 0.831
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Daily Mean DO

Final Hourly DO
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Figure 6. The two-step ANN model flow chart.


