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DEVELOPMENT OF A NEURAL NETWORK MODEL FOR DISSOLVED OXYGEN IN 
THE TUALATIN RIVER, OREGON 

By Stewart A. Rounds, Hydrologist, U.S. Geological Survey, Portland, Oregon, USA 

Abstract 
Dissolved oxygen concentrations in the lower reaches of the Tualatin River in northwest Oregon 
are the result of many processes.  Temperature imposes a seasonal signal through the solubility 
of oxygen in water.  Streamflow determines the travel time through the system and affects the 
amount of oxygen consumed via processes such as ammonia nitrification and the decomposition 
of organic material in the sediment and water column.  Streamflow also affects the rate of 
oxygen exchange across the air/water interface.  The available solar energy limits the photosyn-
thetic production of oxygen by phytoplankton. 

Many of the processes that affect dissolved oxygen concentrations in the Tualatin River – 
solubility, sediment oxygen demand, photosynthesis, respiration, biochemical oxygen demand, 
and reaeration – are controlled to some extent by physical and meteorological factors such as 
streamflow, air temperature, and solar radiation.  To test the extent of that control, an artificial 
neural network model was constructed to predict dissolved oxygen concentrations in the Tualatin 
River at the Oswego Dam using only air temperature, solar radiation, rainfall, and streamflow as 
inputs.  The Oswego Dam is a low-head structure located on a bedrock sill 5.5 kilometers 
upstream from the river's mouth.  Hourly dissolved oxygen concentrations have been collected 
there since 1991; the available dataset spans more than 10 years. 

Feedforward neural network modeling techniques, the most widely used type, were applied to 
this dataset.  Data were segregated into calibration, verification, and test subsets.  Two neural 
network models were constructed in series: the first model simulated daily mean dissolved 
oxygen concentrations, while the second superimposed any daily periodic signals.  The final 
calibrated neural network models predicted the dissolved oxygen concent ration with acceptable 
accuracy, producing high correlations between measured and predicted values (correlation 
coefficient of 0.83, mean absolute error less than 0.9 milligrams per liter).  By some measures, 
neural network model performance was better than that of a calibrated, mechanistic model of 
dissolved oxygen in the Tualatin River.  As expected, however, dissolved oxygen concentrations 
affected by factors other than the physical and meteorological factors used as model inputs, such 
as large point-source ammonia releases, were not predicted well by the neural network model.  
Nevertheless, the neural network model demonstrated potential for use as a river management 
and forecasting tool to predict the effects of flow augmentation and near-term weather conditions 
on Tualatin River dissolved oxygen concentrations. 

INTRODUCTION 

The Tualatin River drains a 1,840 km2 (square kilometer) catchment on the west side of the 
Portland metropolitan area in northwest Oregon (fig. 1).  Approximately 450,000 people live in 
the basin, mainly within a well-defined urban area.  The population relies on the Tualatin River 
as a source of domestic, industrial, and irrigation water; habitat for fish and other wildlife; and a 
place to recreate.  The river also receives highly treated municipal and industrial wastewater 
from the urban population. 
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The Tualatin River begins in the forested Coast Range mountains on the west side of the basin, 
where it flows for 24 kilometers (km) on a sometimes-steep bedrock substrate before reaching 
the valley bottom.  Once on the valley bottom, the river meanders through sedimentary deposits 
in a predominantly agricultural region.  In this 54-km meander reach, the river widens to ap-
proximately 15 meters with a mean depth of about 3 meters, but remains relatively shaded.  The 
river next enters a 43-km backwater reach, where the water is slowed by the presence of a 
bedrock sill at river kilometer (RK) 15 and by a low-head dam at RK 5.5.  The river further 
widens and deepens in the backwater reach, becoming wider than 50 meters with typical depths 
of 4.5 meters.  The river’s width in this reach prevents efficient shading; as a result, solar energy 
inputs often are sufficient to promote large algal populations during the summer.  Downstream of 
the small dam at RK 5.5, the river again follows a bedrock channel with many riffles and inter-
vening pools before joining the Willamette River at West Linn, Oregon. 

Streamflow in the Tualatin River reflects the seasonal patterns in precipitation typical of the 
Pacific maritime climate in western Oregon.  The highest flows occur in the winter rainy season 
between November and April, while the lowest flows normally occur in the late part of the dry 
summer period.  The Tualatin is not a large river, with typical wintertime flows of 30-90 cubic 
meters per second (m3 /s) and summertime flows of only 4-6 m3/s.  Low flow can cause residence 
times in the river’s backwater reach to be as long as 14-17 days. 

Water-Quality Problems  
Historically, the backwater reach of the Tualatin River exhibited many water-quality problems 
during the low-flow summer period.  Low streamflow, coupled with plentiful nutrients (nitrogen 
and phosphorus), warm water, and ample light energy, provided sufficient time for large popula-
tions of phytoplankton to flourish before being transported downstream and out of that reach of 
the river.  Algal blooms often degraded the aquatic health of the river by driving the pH above 
8.5 and causing large variations in the dissolved oxygen (DO) concentration (3-5 mg/L [milli-
grams per liter]).  After a bloom, respiring algae and decomposing organic material from the 
bloom often decreased the DO concentration to less than minimum acceptable levels (6 mg/L).  
Instream nitrification of large loads of ammonia discharged from wastewater treatment plants 
(WWTPs) contributed to low DO concentrations.  Even after standard treatment controls were 
adopted at the WWTPs in the 1970s and 1980s, the river continued to have problems associated 
with high pH and low DO. 

In response to these water-quality problems and in accordance with the Federal Clean Water Act, 
Total Maximum Daily Loads were adopted in 1988 for the Tualatin River and its major tributar-
ies.  The WWTPs were upgraded to state-of-the-art facilities in the early 1990s to remove 
phosphorus and ammonia.  The object of phosphorus removal was to limit the growth of phyto-
plankton in the river.  Ammonia discharges were decreased to reduce the instream consumption 
of DO by ammonia nitrification. 

In 1990, the U.S. Geological Survey (USGS) began a long-term water-quality assessment of the 
Tualatin River with goals of (a) identifying the sources of nitrogen and phosphorus to the river, 
(b) assessing the transport and fate of those nutrients in the river, (c) identifying and quantifying  
the processes affecting DO in the river, and (d) constructing and using a process-based model of 
nutrients, phytoplankton, and DO in the Tualatin River.  Results of the study have been pub-
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lished in a series of reports (for example: Kelly, 1997; Rounds and Doyle, 1997; Kelly and 
others, 1999; Rounds and others, 1999; Rounds and Wood, 2001). 

Factors Affecting Dissolved Oxygen in the Backwater Reach 
The USGS assessment revealed that the DO concentration in the Tualatin River, in the absence 
of large loads of ammonia from the WWTPs, is largely determined by several simple physical 
and meteorological factors:  streamflow, air temperature, and solar radiation.  DO is affected by 
many biological processes such as respiration, photosynthesis, and decomposition.  Although 
biological processes directly influence DO, physical and meteorological factors control and limit 
the effects of those biological processes (Rounds and Wood, 2001). 

Seasonal trends in DO are constrained by its solubility in water, which is a strong function of 
temperature.  Consumption of DO by decomposition processes occurring in the water column 
and the sediments also is a function of water temperature and streamflow.  Rates of the biologi-
cally mediated decomposition reactions 
are influenced by water temperature, and 
the DO consumed by those reactions is 
limited by the time that a given water 
parcel resides in a particular reach of the 
Tualatin River.  Algal respiration and 
photosynthesis only affect the river’s DO 
when large populations of phytoplankton 
are present, and such populations are 
possible only when sufficient light 
energy is available and when streamflow 
is low enough (< 8.5 m3/s) to allow 
sufficient time for the phytoplankton to 
grow before being transported out of the 
backwater reach (fig. 2).  Low concen-
trations of phosphorus can limit algal 
growth, but only during large algal 
blooms and near the surface of the river, 
where sunlight for photosynthesis is in 
ample supply. 

Using these findings, the USGS process-
oriented model of DO in the Tualatin 
River was successful in simulating 
patterns in measured DO concentrations 
that result from seasonal temperature 
variations, periodic blooms of phyto-
plankton, and point-source discharges of 
oxygen-consuming substances such as 
ammonia.  The model simulated the 
river’s DO concentrations with good 
accuracy, producing a mean absolute 
error of 0.9, 1.0, and 1.6 mg/L at three 
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Figure 2.  Favorable streamflow and light conditions are 
necessary before sizable algal blooms can occur in the 
Tualatin River.  Shaded periods are unfavorable for algal 
growth due to high flow (red) or low light (blue) condi-
tions.  Data from 1993 (Doyle and Caldwell, 1996). 
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important locations in the river’s backwater reach over a 42-month period spanning seven 
hydrologically distinct summers between 1991 and 1997 (Rounds and Wood, 2001).  Process-
oriented models, however, typically require copious data on meteorological conditions and the 
quantity, temperature, and chemical characteristics of all inflows, outflows, and instream sites.  
Many of these data, particularly the chemical data, are not available in real time.  Therefore, 
process-oriented water-quality models cannot be run in real time to provide feedback to river 
managers who may need model results to set an appropriate level of flow augmentation. 

Objectives and Approach 
If the DO concentration in the Tualatin River could be predicted only from data that are collected 
in real time, then river managers would be better able to manage the river’s water quality.  The 
river’s DO is influenced greatly by physical and meteorological factors, but whether the DO 
concentration can be predicted from such factors with any accuracy was unknown. 

The purpose of this study was to determine the extent to which the DO concentration in the 
Tualatin River at the Oswego Dam (fig. 1) can be predicted solely from physical and meteoro-
logical measurements such as streamflow, air temperature, solar radiation, and rainfall, using 
multiple linear regression and artificial neural network modeling techniques.  Other real-time 
water-quality measurements (water temperature, specific conductance, etc.) are available and 
could be included in this analysis, but the primary goal was to find out whether the information 
present in the streamflow and meteorological measurements is sufficient to predict DO with an 
acceptable level of error.  The extent to which other measurements of water quality (water 
temperature and specific conductance) might improve the predictions also was tested.  Future 
work may incorporate these techniques into a real- time water-quality forecasting tool. 

ARTIFICIAL NEURAL NETWORKS 

An artificial neural network (ANN) is a mathematical structure designed to mimic the informa-
tion processing functions of a network of neurons in the brain (Hinton, 1992; Jensen, 1994).  
ANNs are highly parallel systems that process information through many interconnected units 
that respond to inputs through modifiable weights, thresholds, and mathematical transfer func-
tions.  Each unit processes the pattern of activity it receives from other units, then broadcasts its 
response to still other units.  ANNs are particularly well suited for problems in which large 
datasets contain complicated nonlinear relations among many different inputs.  ANNs are able to 
find and identify complex patterns in datasets that may not be well described by a set of known 
processes or simple mathematical formulae. 

In this application, simply suspecting that streamflow, air temperature, solar radiation, and 
rainfall influence instream DO concentrations is sufficient to apply an ANN.  Unlike a process-
based model, it is not necessary to know exactly how those variables interact, the nature of the 
physical/chemical/biological processes that cause those patterns, or any mathematical representa-
tion of those processes before applying an ANN.  As a result, ANN models can be deve loped 
more quickly and with less expense than typical process-based models.  Because ANNs contain 
no internal “knowledge” of the processes behind the data patterns, however, they are less able to 
provide additional insight into those processes (Conrads and Roehl, 1999).  Nevertheless, ANNs 
can be useful tools for finding and predicting patterns in water-quality data. 
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Hundreds of different types of ANNs exist.  
The most commonly used type of ANN is a 
type of feedforward network termed the 
multilayer perceptron, an example of which is 
illustrated in figure 3.  In this type of net-
work, the artificial neurons, or processing 
units, are arranged in a layered configuration 
containing an input layer, usually one “hid-
den” layer, and an output layer.  Units in the 
input layer introduce normalized or filtered 
values of each input into the network (ANNs 
work best if the inputs are scaled to the same 
range of values).  Units in the hidden and 
output layers are connected to all of the units 
in the preceding layer.  Each connection 
carries a weighting factor.  The weighted sum 
of all inputs to a processing unit is calculated and compared to a threshold value.  That activation 
signal then is passed through a mathematical transfer function to create an output signal that is 
sent to processing units in the next layer.  Training an ANN is a mathematical exercise that 
optimizes all of the ANN’s weights and threshold values, using some fraction of the available 
data.  Optimization routines can be used to determine the ideal number of units in the hidden 
layer and the nature of their transfer functions.  ANNs “learn” by example; as long as the input 
dataset contains a wide range of the types of patterns that the ANN will be asked to predict, the 
model is likely to find those patterns and successfully use them in its predictions. 

In this study, Statistica Neural Networks software (StatSoft, 2000) was used to create and train 
the ANN models.  Simple 3- layer feedforward networks were used, where the number of units in 
the hidden layer was optimized by the software and by manual testing.  Standard training meth-
ods (back-propagation and conjugate gradient descent) were used for initial network identifica-
tion and selection of the best set of inputs.  Final ANN models were trained using Levenberg-
Marquardt optimization, which is the fastest and most reliable ANN training method for rela-
tively small networks with a single output (DO). 

DATA PREPARATION AND DECORRELATION 

This investiga tion focuses on predicting DO concentrations in the Tualatin River at the Oswego 
Dam (USGS station 14207200) for the May-October periods of 1991 through 2000.  May 
through October is the general time frame for the low-flow summer period when most DO 
problems are likely to occur.  Hourly DO data are available for the Oswego Dam station during 
that time period.  To capture the effects of physical and meteorological forcings on the river’s 
DO concentration, measured values of streamflow, solar radiation, air temperature, and rainfall 
were available for the same time period (table 1). 

To maximize the number of useful records in the dataset, secondary sources of data were some-
times used to fill gaps in the data from the primary source.  For example, rainfall data from the 
Portland-Hillsboro Airport were used to fill gaps in the rainfall record from the Verboort 
Agrimet station.  Some gaps remained in the data, but most gaps were small, resulting in more 
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Figure 3.  A representation of a simple 3-layer 
feedforward artificial neural network with four 
inputs, 5 hidden nodes, and one output. 
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than 40,000 useful records for modeling.  The time period August 23 - September 3 of 1996 was 
excluded from the model dataset due to a rare release of a large quantity of ammonia from one of 
the WWTPs that affected the DO at the Oswego Dam; physical and meteorological factors are 
unrelated to that point-source problem and inclusion of that time period would only serve to 
distort other patterns in the data. 

Table 1.  Sources of data.  The first station listed is the primary source for each parameter. 
[USGS = U.S. Geological Survey; BOR = Bureau of Reclamation; NWS = National Weather Service] 

Parameter 
Data 

Frequency 
Data 

Source Station (ID Number) 
Map Number 

(fig. 1) 
Dissolved Oxygen Hourly USGS Tualatin River at Oswego Dam (14207200) 5 
Streamflow Hourly USGS Tualatin River at West Linn, OR (14207500) 6 
Solar Radiation Hourly USGS Durham WWTP (452359122454500) 1 
Air Temperature Hourly USGS 

USGS 
BOR 

Tualatin River at Oswego Dam (14207200) 
Rock Creek WWTP (452938122565500) 
Agrimet meteorological station at Verboort, OR 

5 
2 
3 

Rainfall Daily BOR 
NWS 

Agrimet meteorological station at Verboort, OR 
Portland-Hillsboro Airport meteorological station 

3 
4 

Because ANN models have no underlying knowledge of the processes affecting the input and 
output variables, it is critical to examine the data for periodicity, cross-correlations, and impor-
tant time lags (Roehl and Conrads, 2000).  Results from such analyses can be used to maximize 
the signals in the input data that will help to predict the output. 

Periodicity 
Each parameter’s data were analyzed by Fourier transform to determine the presence of periodic 
signals.  Solar radiation, air temperature, and DO all had strong periodic signals at daily time 
scales; periods of 24 and 12 hours characterized the most important signals.  Streamflow ap-
peared to have useful signals at time scales longer than a day or two, but only weak patterns at 
shorter time scales.  Figure 4 illustrates typical power spectrums from these data.  Strong signals 
at daily time scales can obscure important correlations and time lags in the data (Risley and 
others, 2002); therefore, the short and long time scale signals in the data were separated.  A low-
pass filter was used to remove the 24-hour and shorter periodic signals from each time series, 
preserving any periodic signals at time scales longer than one day; the resulting time series were 
equivalent to the 24-hour running average of each input.  Long-term patterns and short-term 
periodicity in the data were simulated with separate models. 

Cross-Correlations and Time Lags 
Multiple linear regression and ANN techniques work best if the data inputs are as independent as 
possible.  To test for interdependence, the data were correlated against one another using linear 
regression techniques.  The analysis was extended to identify important time lags by analyzing 
the correlation coefficients with an imposed time lag.  Figure 5 illustrates how the low-pass 
filtered DO data correlate with other time- lagged and low-pass filtered input variables.  Each 
input variable appears to offer some information that might be helpful in predicting DO; solar 
radiation and air temperature appear to offer the best linear correlations. 

Figure 5 also illustrates several important time lags that are present in the data.  The signal in the 
solar data is maximized when the solar data are lagged in time by 1.75 days; in other words, DO 
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has its highest correlation with the solar insola-
tion rate that occurred about 2 days previous.  
That time lag has a physical basis because the 
available solar energy affects the amount of DO 
produced by photosynthesis, and the effects of 
very sunny or very cloudy days on algal growth 
are not immediate.  The best air temperature 
signal is lagged by 2/3 of a day, and the greatest 
correlation with rainfall is lagged by 2.3 days. 

Many of the DO cross-correlations are mini-
mized at a time lag on the order of 12 days, 
which makes sense because the typical summer 
residence time in the backwater reach of the 
Tualatin River is on the order of 10-14 days, 
depending on streamflow.  Autocorrelation of 
the DO data also shows a minimum at a time lag 
of about 12 days.  Streamflow data from several 
main-stem Tualatin River gages were analyzed; 
all were found to be highly cross-correlated (not 
shown).  Data from just one gage, therefore, 
were sufficient to capture the signal in the 
streamflow data. 

LOW-FREQUENCY (DAILY MEAN) MODELS 

The cross-correlation and time- lag results indicate that the information in the input data is 
maximized by using the following manipulations of those data as model input, where “lp” 

Dissolved Oxygen

Streamflow

Air Temperature

Solar Radiation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Rainfall

Figure 4.  Typical power spectrums for the 
dissolved oxygen, streamflow, air temperature, 
solar radiation, and rainfall data. 
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denotes the low-pass filter, “lag” means time- lagged, and the symbols Q, S, AT, and R stand for 
streamflow, solar radiation, air temperature, and rainfall, respectively: 
§ low-pass filtered data:  lp-Q, lp-S, lp-AT, R (raw rainfall data were daily) 
§ low-pass filtered data from 12 days previous:  lp-Q-12, lp-S-12, lp-AT-12, R-12 
§ time- lagged filtered data:  lp-AT-lag (2/3 day), lp-S-lag (1.75 days), R- lag (2.3 days) 
§ miscellaneous:  year, day-of-year, fraction-of-day 

The data from 12 days previous provide long-term slope information.  To avoid correlations 
between unmodified and time-lagged data, the time- lagged inputs were calculated as diffe rences 
between the original and lagged data.  Using differences is a good way to decorrelate inputs. 

Initial searches for the best ANN to predict the low-pass (daily mean) DO revealed that some 
inputs were more important than others.  Indeed, some inputs seemed to convey little useful, 
independent information.  To create the most efficient model, the model inputs were culled to 
leave only these eight:  lp-Q, lp-AT, lp-S, lp-Q-12, lp-AT-12, lp-S-lag, day-of-year, and year.  
Note that rainfall data were eliminated.  Any signal in the rainfall data apparently was redundant 
with information in the air temperature and solar data; the presence of many zero values on dry 
days also may have decreased the utility of the rainfall data. 

In all of the models tested, half the data were randomly selected for model training (calibration).  
Half the remaining data were used for verification, and the rest were used as an independent test 
dataset.  Statistica Neural Networks uses the training data for training the model – optimizing the 
model’s weights and threshold values.  During training, the verification data are used as feedback 
to ensure that the model does not become overtrained; overtraining is a condition in which the 
model finds patterns to decrease the error in the training dataset that are not reflected in the 
larger dataset.  Because the verification data are used to prevent overtraining and create a more 
robust model, they are not a true, independent test of the model.  For that reason, it is useful to 
reserve a third portion of the dataset for an independent test of the trained model.  In all cases, 
model performance was almost identical for each of the training, verification, and test datasets. 

Multiple Linear Regression 
Multiple linear regression may be viewed as a special case ANN model that uses linear transfer 
functions and no hidden layers.  If the linear model performs as well as a more complex ANN, 
then using the nonlinear ANN may not be justified; thus, linear models are useful as a basis for 
comparison.  Multiple linear regression analysis of the low-frequency data (8 inputs as listed 
above) revealed that the patterns in the data must be highly nonlinear, as the linear model failed 
to capture the important patterns in the measured DO data (table 2). 

Artificial Neural Network 
Optimization revealed that the best ANN for these eight inputs included one hidden layer with 
seven processing units.  Logistic transfer functions (1/(1+e-x)) were used for all hidden- layer 
units.  Other popular transfer functions, including the hyperbolic tangent function, were tried but 
none produced better results.  ANN predictions were markedly better than the linear model and 
in many cases better than the results from the USGS process-based model, with a mean absolute 
error of only 0.83 mg/L and a correlation coefficient of 0.837 (fig. 6, table 2).  The ANN model 
captured most of the important patterns in the data, producing remarkable fits to the measured 
DO considering that the predictions were based only on streamflow, air temperature, solar 
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radiation, year, and day-of-year.  Sensitivity analyses showed that the most important predictor 
variables were lp-Q, day-of-year, lp-S, and lp-S-lag, respectively. 

ANN models built with additional inputs of water temperature and specific conductance from the 
Tualatin River at Oswego Dam produced slightly better results (mean absolute error of 0.75 
mg/L), but additional models to predict those inputs would be required if this more complex 
ANN were used for DO forecasting.  For the purpose of forecasting, future values of inputs must 
be known or estimated in a reliable manner.  That exercise is left as a subject for future study. 

FINAL HOURLY MODEL 

High-frequency signals in the data were separated from low-frequency signals by subtracting the 
low-pass filtered data from the original data.  The “high-pass” (hp) solar signal, for example, was 
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determined as: hp-S = S – lp-S.  High-pass data have the long-term trends removed and reflect 
only daily and shorter variations.  These high-pass data, as well as the output of the low-
frequency ANN model (call that “lp-DOANN”), were used as inputs to a new ANN to predict the 
measured hourly DO.  The high-pass air temperature and solar inputs were included at several 
time lags to capture the 12-hour and 24-hour signals in their data; the power spectra in figure 4 
show that the streamflow and rainfall data have no useful information at these short time scales. 

Testing of various ANNs with time- lagged, high-pass air temperature and solar inputs revealed 
that the information in those inputs was captured adequately with time lags of 2, 23, and 56 
hours for air temperature and 4, 25, and 58 hours for solar radiation.  Further testing showed that 
the best model needed only nine inputs:  lp-DOANN, hp-AT-lag (3 lags), hp-S-lag (3 lags), day-
of-year, and year.  Final training and optimization yielded an ANN with one hidden layer con-
taining 10 processing units.  As with the low-frequency ANN, logistic transfer functions were 
used for the hidden-layer units.  The final hourly ANN model captured the long-term and daily 
patterns in the measured DO data, fitting the data with a mean absolute error of 0.86 mg/L and a 
correlation coefficient of 0.831 (table 2).  Figure 7 illustrates the daily variations that the model 
produced in the final DO predictions for a subset of the data.  These final predictions appear to 
be accurate enough to be useful.  Future work will focus on incorporating these and other ANN 
models into real-time water-quality forecasting tools. 

Table 2.  Goodness-of- fit statistics for the models predicting Tualatin River DO at Oswego Dam. 

Model Type 
Time 
Scale 

Number 
of Points 

Mean Absolute 
Error 

Root Mean 
Square Error 

Correlation 
Coefficient 

Multiple Linear Regression low-frequency 40,388 1.29 mg/L 1.69 mg/L 0.589 
low-frequency 40,388 0.83 mg/L 1.14 mg/L 0.837 ANN 

final hourly 40,372 0.86 mg/L 1.21 mg/L 0.831 

CONCLUSIONS 

Artificial neural network models were developed to simulate daily mean and hourly DO concen-
trations in the Tualatin River at the Oswego Dam.  The DO at that site is affected by its solubility 
as well as biological processes such as algal photosynthesis and respiration, sediment oxygen 
demand, biochemical oxygen demand, and ammonia nitrification.  The effects of these
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Figure 7.  Measured and simulated hourly dissolved oxygen concentrations for the summer of 1995 in 
the Tualatin River at Oswego Dam (station 14207200).  Simulated values were calculated by the final 
hourly ANN model (9 inputs, 1 hidden layer with 10 processing units, 1 output). 
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biological processes were hypothesized to be constrained by a small set of physical and meteoro-
logical factors:  streamflow, air temperature, solar radiation, and rainfall.  Neural ne twork and 
regression models were built to test this hypothesis, using data from May-October of 1991-2000. 

Multiple linear regression models failed to capture the long-term patterns in the DO data, pro-
ducing poorly correlated results.  Neural network models, however, were successful in predic ting 
patterns in the DO data on daily, weekly, and seasonal time scales.  ANN model performance 
was good, with mean absolute errors less than 0.9 mg/L.  The ANN predictions often were better 
than those from a USGS process-based model of the Tualatin River.  As applied to the Tualatin 
River, however, ANN and process-based models have different purposes.  The process-based 
model is most useful for providing insight into how the river works, identifying important 
processes, and testing the effects of point-sources and management strategies.  The ANN model 
has tremendous potential as a forecasting tool, but yields less insight into the specifics of riverine 
processes. 

Now that it has been demonstrated that DO in the Tualatin River can be predicted with accept-
able accuracy from a small set of physical and meteorological measurements, future work will 
concentrate on the development of a real-time DO forecasting tool using these ANN techniques.  
Refinements may include the prediction of water temperature as a first step, so that DO solubility 
estimates may be included as model input. 
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