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This article describes some of the capabilities encapsulated within the Model Independent Calibration
and Uncertainty Analysis Toolbox (MICUT), which was written to support the popular PEST model
independent interface. We have implemented a secant version of the Levenberg–Marquardt (LM)
method that requires far fewer model calls for local search than the PEST LM methodology. Efficiency
studies on three distinct environmental model structures (HSPF, FASST, and GSSHA) show that we can
find comparable local minima with 36–84% fewer model calls than a conventional model independent
LM application. Using the secant LM method for local search, MICUT also supports global optimization
through the use of a slightly modified version of a stochastic global search technique called Multi-Level
Single Linkage [Rinnooy Kan, A.H.G., Timmer, G., 1987a. Stochastic global optimization methods, part I:
clustering methods. Math. Program. 39, 27–56; Rinnooy Kan, A.H.G., Timmer, G., 1987b. Stochastic global
optimization methods, part ii: multi level methods. Math. Program. 39, 57–78.]. Comparison studies with
three environmental models suggest that the stochastic global optimization algorithm in MICUT is at
least as, and sometimes more efficient and reliable than the global optimization algorithms available in
PEST.
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1. Introduction

Computer-based calibration of environmental models generally
involves minimization of an ‘‘objective function’’ – a measure of
model-to-measurement misfit. In simple cases this is comprised of
a single objective; for example, in the watershed modeling context
it could be specified as differences between measured and modeled
stream flows at daily, hourly, or even smaller intervals. In more
complex cases a multi-criterion objective function is constructed in
which different measurement types, or the same measurement
type processed in different ways, comprise separate components of
a composite global objective function (in the watershed modeling
context, see Madsen, 2000; Boyle et al., 2000; Cappelaere et al.,
2003; Doherty and Johnston, 2003; Shrestha and Rode, 2008).

An important consideration in assessing the performance of
a parameter estimation package is that of run time. Parameter
estimation software, no matter what its algorithmic basis, must run
the model to be calibrated many times in the course of minimizing
the objective function that is used to characterize model-to-
measurement misfit. Minimizing the number of model runs
required during the calibration process is nearly always important,
but particularly when the objective function landscape contains
multiple local minima, model run times are high, or when multiple
prediction specific calibrations must be conducted within the
context of a single model deployment (Moore and Doherty, 2005).
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The Levenberg–Marquardt (LM) method of computer-based
parameter estimation (Levenberg, 1944; Marquardt, 1963) was
implemented to be a part of the Model Independent Calibration and
Uncertainty Analysis Toolbox (MICUT) software, partially described
herein. The LM method has features that make it attractive for
model calibration. In calibration contexts where local optima are
rare or nonexistent, the LM method is efficient in terms of its model
run requirements. Also, is its ability to readily report estimates of
parameter uncertainty, correlation, and (in)sensitivity as a by-
product of its use both during and after the parameter estimation
process. And moreover, the LM method is also easily adapted to
include regularization devices to maintain numerical stability and
robustness in the face of potential numerical problems, that
adversely affect all parameter estimation methodologies, caused by
parameter insensitivity and/or parameter correlation (Menke,1984;
DeGroote-Hedlin and Constable, 1990; Doherty and Skahill, 2006).

The model independent Levenberg–Marquardt (LM) method
based parameter estimation software PEST (Doherty, 2004,
2007a,b), which quantifies model-to-measurement misfit in the
weighted least squares sense, is now widely used to support
environmental model calibration. In addition to its traditional
groundwater model calibration application setting (Zyvoloskia
et al., 2003; Tonkin and Doherty, 2005; Moore and Doherty, 2006;
Gallagher and Doherty, 2007a), it is now employed to calibrate
ecological models (Rose et al., 2007; Gaucherel et al., 2008), land
surface models (Santanello Jr. et al., 2007) and models in other
application areas including nonpoint source pollution (Baginska
et al., 2003; Haydon and Deletic, 2007), surface hydrology (Doherty
and Johnston, 2003; Gutiérrez-Magness and McCuen, 2005;
Kunstmann et al., 2006; Skahill and Doherty, 2006; Doherty and
Skahill, 2006; Gallagher and Doherty, 2007b; Goegebeur and Pau-
wels, 2007; Iskra and Droste, 2007; Kim et al., 2007; Maneta et al.,
2007), and surface water quality (Rode et al., 2007).

The primary focus of this article is to show how it is possible to
efficiently overcome a couple of drawbacks associated with LM-
based Model Independent Parameter Estimation as implemented in
PEST. One drawback associated with the LM method is that it
requires the derivatives of the objective function with respect to the
model parameters. Model independent LM implementations can
become computationally costly when elements of the Jacobian
matrix must be computed using finite differences based on model
runs with incrementally varied parameter values. Certainly, using
multiple processors can decrease the time required to construct the
Jacobian matrix; however, it would be better, as demonstrated here,
to not populate the entire Jacobian matrix unless really necessary.

Another drawback of the LM method is that it is a local search
method. Thus, if there are different ‘‘regions of attraction’’ in
parameter space, its solution will lead to just one of possibly many
objective function minima, the particular one that is found is
dependent upon the user-supplied set of initial parameter values.
While stochastic global optimization (GO) can be employed as
a remedy, one would like to utilize stochastic GO methods that are
not only reliable in finding the global minimum, but also efficient in
the sense that they minimize the return to previously visited local
minima in parameter space. A modeler would possibly also like to
receive some information on the locations of non-global minima,
especially if these minima are little different in magnitude from the
global minimum, but are widely separate from it in parameter
space. Characterizing the structure of the objective function surface
allows a modeler to qualitatively appraise the linearity and utility of
his/her model, the uncertainty of parameters estimated though the
parameter estimation process, and the information content of the
data set that is currently available for the model calibration (Sor-
ooshian and Arfi, 1982; Kuczera, 1990). However, such a character-
ization should not come at the possible expense of repeatedly
returning to the same locations on the objective function surface.
To better enable the expectation that estimated parameter sets
result in the best possible fit between model outputs and field
measurements, Skahill and Doherty (2006) enhanced the PEST
software (Doherty, 2004) LM local search method via the imple-
mentation of two stochastic global optimization methods, viz.
Multistart and Trajectory Repulsion. Both of these methods can
suffer from repeatedly locating the same local minima. Doherty
(2003) also enabled an interface to the Shuffled Complex Evolution
(SCE) general purpose global optimization method (Duan et al.,
1992, 1993) and the Covariance Matrix Adaption Evolutionary
Strategy (CMAES) general purpose optimization method (Hansen
and Ostermeier, 2001; Hansen et al., 2003).

The objectives of this article are to report on the following:

1. Some of the capabilities of the independent parameter esti-
mation software package MICUT that accommodates the PEST
model independent and input control file protocol (Doherty,
2004),

2. Efficiency enhancements in the MICUT LM method
implementation,

3. Implementation into MICUT of an alternative stochastic global
optimization method, which uses the secant LM method for
local search, that can be readily employed with only slight
modification to an existing PEST input control file,

4. An efficiency comparison, using three distinct environmental
model structures, of the newly implemented stochastic global
optimization method in MICUT with Trajectory Repulsion, and
the SCE and CMAES optimization methods that are currently
available to users of the PEST Model Independent Parameter
Estimation software (Doherty, 2004).

Table 10 lists and briefly defines acronyms used within this
article.

2. Methodologies and enhancements

2.1. Levenberg–Marquardt method

As previously mentioned, the context for quantifying model-
to-measurement misfit is nonlinear least squares minimization.
Marquardt (1963) modified the Levenberg method (Levenberg,
1944), which is a blend of the gradient descent and Newton’s
methods of parameter estimation, to better accommodate Hessian
information into the parameter upgrade vector. Marquardt’s
modification remedied the classic problem of ‘‘hemstitching’’,
wherein successive parameter improvements result in oscillations
across a long and narrow objective function valley, which is never
actually penetrated (Doherty and Skahill, 2006). The Levenberg–
Marquardt method is given by

p� p0 ¼
�
XtQXþ l diag½XtQX�

��1
XtQ ðh� h0Þ (1)

where p0, X, Q, l, h, and h0 represent current parameter values, the
model Jacobian matrix, each row of which is comprised of the
derivatives (i.e. sensitivities) of a particular model output (for
which there is a corresponding field measurement) with respect to
all elements of p, a ‘‘weight matrix’’ wherein, ideally, each diagonal
element is proportional to the inverse of the squared potential error
associated with the corresponding processed measurement, the
parameter which blends gradient descent (dominant when l is
large) and Newton’s method (dominant when l is small), and the
n-dimensional vectors of observations and model outputs,
respectively. The Hessian of the objective function has been
approximated in the usual manner by assuming that the residuals
can be estimated by linear functions or the residuals themselves are
small. Where the model is nonlinear, p calculated through equation
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(1) is not optimal (i.e. it does not minimize the objective function)
unless p0 is close to optimal. Hence, after equation (1) is used to
calculate an improved parameter set, a new set of sensitivities (i.e.
X) is calculated on the basis of the new parameter set, and the
process is repeated until convergence to the objective function
minimum is achieved. Skahill and Doherty (2006) and Doherty and
Skahill (2006) both provide more lengthy summaries of the LM
method.
2.2. Secant version of the Levenberg–Marquardt method

With a conventional model independent implementation of the
LM method, the environmental model is a ‘‘black box’’ in that only
outputs of the model are available and elements of the matrix X are
often obtained by numerical differentiation. The LM method
implemented in PEST (Doherty, 2004) requires anywhere between
m and 2m forward model calls (dependent upon whether forward
or central finite differences are employed) to populate the column
space of the matrix X at each optimization iteration. It has been
suggested that this is a general requirement for model independent
derivate-based methods, such as LM, that employ perturbation
sensitivities to populate the matrix X at each optimization iteration
(Doherty, 2004; Tonkin and Doherty, 2005). To the contrary, there
are well-established methods (Broyden, 1965) available that allow
for better efficiency with respect to updating the matrix X at each
optimization iteration.

2.2.1. Broyden’s rank one update
Let X denote the current approximation to the Jacobian. Broyden

(1965) developed a generalized secant method to update an
approximation to the Jacobian, Xnew. Broyden’s rank one update is
given by

Xnew ¼ Xþ ½y � Xs�sT

sTs
(2)

where y and s represent the n-dimensional vector of differences in
model outputs obtained from the current and previous parameter
values, and the m-dimensional vector of the difference between the
current and previous parameter values, respectively. Many update
formulas are available (Fletcher, 1987); however, formula (2) has
been shown to work well for nonlinear least squares problems.

Incorporating Broyden’s rank one update into the LM imple-
mentation eliminates the requirement to conduct any additional
forward model calls to populate the matrix Xnew at each optimi-
zation iteration. To mitigate against the potential that Xnew may
eventually become a poor approximation to the true Jacobian after
some optimization iterations, Xnew can occasionally be fully upda-
ted in the usual manner using finite differences. Furthermore, this
occasional full updating can also be supplemented through cyclic
updating, using finite differences, at each optimization iteration, of
anywhere between one and m individual columns of X (Madsen
et al., 2004).

The independent LM implementation in MICUT accommodates
the model independent PEST interface (Doherty, 2004) and
includes the following additional abilities with respect to updating
the matrix X (Skahill and Baggett, 2006) which in all cases is
initially approximated by a full update using forward and/or central
finite differences:

1. A full update, at each optimization iteration, using forward and/
or central finite differences.

2. Use of the Broyden rank one update.
3. Use of the Broyden rank one update, with a recomputation, i.e.

a full update of X whenever the ratio of the new and old
objective function values is greater than a specified input value.
4. Use of the Broyden rank one update, with a recomputation, i.e.
a full update of X whenever the ratio of the new and old
objective function values is greater than a specified input value,
and also cyclic updating, using finite differences, at each opti-
mization iteration, of anywhere between one and m (a speci-
fied input) individual columns of X.

MICUT may be used as an alternative to PEST (Doherty, 2004,
2007a,b) for more efficient model independent LM-based param-
eter estimation. Only slight modifications to the PEST control file
are required to utilize the Broyden update functionalities noted
above. MICUT also provides linear based information on parameter
uncertainty, correlation, and sensitivity. Doherty (2007a,b)
reportedly did implement the Broyden rank one update, but
evidently still computes a full update to the Jacobian matrix at each
optimization iteration. This approach does not fully realize the
potential efficiency gains of a secant version of the LM method and
in some cases, as shown below, significantly increases the number
of model runs required to find a local minimum.

2.3. Stochastic global optimization

As mentioned above, one of our objectives was to include into
MICUT a more efficient and reliable stochastic global optimization
algorithm than what is currently available in PEST. Efficient and
reliable optimization methods, possibly constrained by a pre-
determined computational budget, that are capable of efficiently
finding the locations of other good minima in addition to an esti-
mate of the global minimum, are needed to identify environmental
models. See, for example, Duan et al. (1993), Gupta et al. (2003),
Shoemaker et al. (2007), Tolson and Shoemaker (2007), and refer-
ences cited therein for applications of global optimization in the
watershed modeling context. Stochastic global optimization algo-
rithms estimate the global minimum of the objective function by
initiating local searches from global, randomly sampled points. The
local and global phases can be iterated and/or the local searches may
be initiated at some or all or the globally sampled points. Stochastic
global optimization algorithms are guaranteed to converge, with
probability one, to the global minimum as the sample size
approaches infinity. Stronger convergence properties are possible
for some stochastic algorithms, as we mention below. Moreover,
probabilistic-based stopping criteria can be developed for stochastic
global optimization methods (Rinnooy Kan and Timmer, 1987a,b;
Törn and Žilinskas, 1987); however, an a priori computational
budget may preclude any concern regarding termination criteria.

2.3.1. Multistart
MICUT and PEST both incorporate a simple stochastic global

optimization algorithm called Multistart, that involves both
a global phase and a local phase. The Multistart method samples
points from a uniform distribution over the feasible parameter
space and starts a local search from each of the sample points. For
both MICUT and PEST, the local search algorithm is the Levenberg–
Marquardt method. Uniform random sampling ensures global
reliability of the method and the estimate for the global minimum
is the smallest local minimum found. Multistart is inefficient in that
each local minimum, particularly those in large regions of attrac-
tion in the parameter space, is generally found multiple times. For
both MICUT and PEST, Multistart naively stops after a user-specified
number of iterations; however, more sophisticated stopping rules
are possible. For instance, Boender (1984) developed optimal
Bayesian stopping criteria for Multistart.

2.3.2. Trajectory Repulsion
In attempts to overcome the inefficiency of repeatedly locating

the same local minima, Skahill and Doherty (2006) developed, and



Fig. 1. MICUT implementation of Multi-Level Single Linkage algorithm.
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included into PEST, the Trajectory Repulsion method as a basis for
extending LM-based parameter estimation to find multiple local
optima. It is a stochastic global optimization algorithm designed to
encourage maximal exploration of feasible parameter space.
Trajectory Repulsion begins by evaluating the objective function
on a single uniform random sample of points and discarding those
points for which the objective function is above the median. A
local search is begun from the point with the lowest objective
function value. Subsequent local searches are initiated at points in
the reduced sample set that are furthest from previous search
trajectories, in attempts at avoiding repeatedly locating the same
local minima. A variety of user-specified stopping criteria are
implemented, and can be used to balance local and global explo-
ration in parameter space. A complete specification of the
Trajectory Repulsion method may be found in Skahill and Doherty
(2006).

MICUT includes a slightly modified implementation of Trajec-
tory Repulsion. To potentially increase efficiency, we have made
a slight modification that terminates the current local search if the
current trajectory is within a user-specified distance of any
previous parameter trajectory, the presumption being that the
current trajectory is headed toward an already found minimum.

Skahill and Doherty (2006) considered a single case study
example, in the watershed modeling context, to evaluate the
efficiency of Trajectory Repulsion relative to Multistart and SCE.
Although its run-efficiency was shown to be at least as good as
that of the SCE method for the single case study example
considered, additional results indicated that it is nonetheless
inefficient, much like Multistart, in that it repeatedly found the
same local minima.

2.3.3. Clustering methods and Multi-Level Single Linkage
Multistart and Trajectory Repulsion are both inefficient in that

they may return to previously visited local minima several times.
Ideally, we would like to perform a single local search within the
region of attraction of each local minimum. This would not only
ensure that each local minimum is identified just once, but also that
in fact we find all local minima. But we also want to employ
a method that works well if one has a predetermined computa-
tional budget in that for a given effort it compares favorably with
other methods. Clustering methods were designed to accommo-
date these requirements. They are variants of Multistart and the
basic idea behind them is to group close points, sampled from the
feasible parameter space and for which the specified groups
presumably relate to actual regions of attraction in parameter
space, and to apply a single local search procedure within each
identified cluster. Either reduction; wherein sampled points asso-
ciated with the highest objective function values are temporarily
removed, or concentration; wherein the sampled points are
transformed through application of one or a few iterations of a local
search procedure, is employed to identify a reduced sample as part
of the clustering process in order to provide some assurance that in
fact the specified groups correspond to regions of attraction of
actual local minima. Clustering methods are often iterative in that
the global and local phases are repeated sequentially until a stop-
ping criterion is satisfied.

With clustering methods, it is possible that one cluster inter-
sects multiple regions of attraction; hence, the global minimum
could be missed, or that one region of attraction contains more than
one cluster, thus allowing for the same local minimum to possibly
be identified more than once. Multi-Level Single Linkage (MLSL) is
a clustering method that was developed to reduce the probability of
not finding a local minimum or of finding a local minimum more
than once (Rinnooy Kan and Timmer, 1987a,b).

MLSL mimics clustering by calculating a critical distance rk at
each iteration, k. This critical distance can be used to build
clusters, but instead, in MLSL, the decision as to whether a local
search is to be initiated from a given reduced sample point is
simply based on whether there exists another reduced sample
point within the distance rk of the given point with a corre-
sponding lower objective function value. The critical distance rk is
reduced at each iteration.

Under certain assumptions, MLSL has stronger convergence
properties than simpler stochastic global optimization algorithms.
First, if the algorithm continues forever, the number of local
searches performed is finite. Second, if rk tends to zero with
increasing k, then every local minimum will be identified in finite
time with probability one.

MLSL was implemented as part of the MICUT software and it
uses the LM method for local search. The MLSL implementation
follows that of Rinnooy Kan and Timmer (1987a,b) with a slight
modification to sometimes avoid repeatedly finding the same local
minima. Our implementation of the MLSL algorithm is summarized
in Fig. 1. It can be utilized by simply appending the MLSL search
parameters to the end of the control data section of a working PEST
input control file. The following stopping criteria were included as
part of our MLSL implementation:

1. The objective function has not been lowered over a specified
number of local searches,

2. A specified maximum number of local searches have been
performed,

3. The expected number of minima, in the Bayesian sense,
exceeds the number of identified distinct local minima by less
than 0.5 (Rinnooy Kan and Timmer, 1987a,b),

4. A specified maximum number of MLSL iterations have been
performed,

5. The objective function has not been lowered over a specified
number of MLSL iterations.

An instance of our MLSL implementation stops when any one of
the above criteria are satisfied.

3. Examples

Efficiency gains that can be achieved from a properly imple-
mented secant version of the LM method relative to conventional
LM application, using the implementations in MICUT, are



Table 1
HSPF parameters, their functions, and constraints imposed during the calibration process.

Parameter name Parameter function Bounds imposed during calibration process

IMP Percent effective impervious area 11–19% (Alley and Veenhuis, 1983)
LZSN Lower zone nominal storage 2–15 in (5–38 cm)
UZSN Upper zone nominal storage 0.05–2 in (0.1–5 cm)
INFILT Related to infiltration capacity of the soil 0.001–1.0 in/h (0.002–2.5 cm/h)
LZETP Lower zone ET parameter – an index of the density of deep-rooted vegetation 0.1–0.9
INTFW Interflow inflow parameter 1.0–10.0
IRC Interflow recession parameter 0.30–0.85 day�1

AGWRC Groundwater recession parameter 0.833–0.999 day�1
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demonstrated in Section 4 by examining the reduction in the total
number of model calls for single local searches. The efficiency gains
from the independent LM implementation in MICUT are also
compared against efficiencies associated with the model indepen-
dent LM-based PEST software (Doherty, 2004, 2007a,b), using an
eight parameter Hydrological Simulation Program – FORTRAN
(HSPF) (Bicknell et al., 2001) hydrologic model, a ten parameter Fast
All-season Soil Strength (FASST) state-of-the-ground model (Fran-
kenstein and Koenig, 2004), and a sixteen parameter Gridded
Surface Subsurface Hydrologic Analysis (GSSHA) (Downer and
Ogden, 2003a,b) hydrologic model as case study examples. Using
the three previously mentioned environmental models, we also
compare the efficiencies, in terms of the number of model calls
required to achieve a given objective function value, of the imple-
mentations of Trajectory Repulsion and MLSL in MICUT with that of
SCE and CMAES as implemented in PEST (Doherty, 2007b).

3.1. HSPF model description

Use of the methodologies discussed in the preceding sections
are now demonstrated by applying them to the calibration of an
HSPF hydrologic model for the 6.6 square kilometer Wildcat Creek
watershed located in Kitsap County, Washington. The model was
developed to support a total maximum daily load study (ENVVEST
Regulatory Working Group 2002). Its run time on a Pentium 4
computer with a 2 GHz processor was about 4 s.

Estimation of eight HSPF parameters was undertaken by
matching observed and simulated daily flows over four non-
contiguous time intervals spanning the period 1st Jan 2001–2nd
Sep 2002, resulting in a total of 456 daily flow observations for use
in the calibration process. (Data absences over this period were
caused by a malfunctioning gage.) The shortcomings of such a short
data set as a basis for reliable parameter estimation are well known
(Yapo et al., 1996); unfortunately, however, no other data were
available for calibration of this model. This is not of concern in the
present instance as the purpose of this article is to demonstrate the
capabilities of the methodologies discussed above in improving
inversion run-efficiency for LM method based model independent
calibration. The objective function was defined as the sum of
weighted squared differences between modeled and observed
Table 2
Name and meaning of FASST adjustable model parameters.

Name Meaning

bddm Bulk density of dry material (g/cm3)
por Porosity (0.0–1.0)
lse Longwave surface emissivity
qc Quartz content (0.0–1.0)
tcbdm Thermal conductivity of the bulk dry material (W
shdm Specific heat of dry material (J/kg K)
shc Saturated hydraulic conductivity (cm/s)
rwc Residual water content (vol/vol) (0.0–1.0)
vGBph van Genuchten Bubbling pressure head (cm)
vGe van Genuchten exponent (n)
log-transformed flows, with all weights assigned a value of 1.0.
Thus h of equation (1) was comprised of the logs of daily flows,
while the model represented by X in these equations calculated the
model-generated counterparts to these logged flows. Q was the
identity matrix.

Table 1 lists the names and functions of the HSPF parameters
estimated through the calibration process. Also shown in this table
are the bounds applied to these parameters; guidance in the setting
of most of these bounds was obtained from USEPA (2000). Note
that, in order to circumvent hypersensitivity of the AGWRC
parameter as it approaches 1.0, it was transformed prior to esti-
mation; the transformed parameter (named AGWRCTRANS in the
present study) can vary between 5.0 and 999.0 as AGWRC varies
between 0.833 and 0.999. See Skahill and Doherty (2006) for
details. HSPF parameters other than those appearing in Table 1
were fixed at reasonable values.
3.2. FASST model description

The methodologies discussed in the preceding section were also
demonstrated by applying them to the calibration of a FASST state-
of-the-ground model for Yuma, Arizona. Ten FASST model param-
eters were estimated by matching observed and simulated surface
soil moisture and surface soil temperature data for the period 15
March 1993–30 April 1993, resulting in a total of forty-seven
surface soil moisture and 1122 surface soil temperature observa-
tions for use in the calibration process. The names and meanings of
the FASST adjustable model parameters are listed in Table 2. As with
the HSPF model application, in order to better accommodate
scaling issues resulting from the use of different units for different
parameters, and in an attempt to decrease the degree of nonline-
arity of the parameter estimation problem, the logs of the adjust-
able parameters were estimated instead of their native values. Past
experience has demonstrated that greater efficiency and stability of
the parameter estimation process can often be achieved through
this means (Skahill and Doherty, 2006). FASST input parameters
other than those appearing in Table 2 were fixed at reasonable
values. Weights were uniformly adjusted within the two observa-
tion groups constituting the objective function such that the
Bounds imposed during calibration process

1.14–2.97
0.23–0.54000
0.80–0.99
0.03–0.54

/m K) 0.29–0.83
803.9–850.6
2.42E-07–8.61E-03
1.00000E-03–0.01000
8.0645–141.254
1.12500–4.808



Table 3
Name and meaning of GSSHA adjustable model parameters.

Name Meaning Bounds imposed during calibration process

ro_pine Overland flow roughness coefficient – forest 0.075–0.45
ro_cottn Overland flow roughness coefficient – cotton/soy fields 0.075–0.45
ro_pastr Overland flow roughness coefficient – pasture 0.075–0.45
ro_gully Overland flow roughness coefficient – gullied land 0.075–0.45
re_pine Overland flow retention depth – forest 0.1–2.00 mm
re_cottn Overland flow retention depth – cotton/soy fields 0.1–2.00 mm
re_pastr Overland flow retention depth – pasture 0.1–2.00 mm
re_gully Overland flow retention depth – gullied land 0.1–2.00 mm
hcnd_GSL Soil saturated hydraulic conductivity – gullied land/silt loam 0.17–1.3 cm/h
hcnd_PCL Soil saturated hydraulic conductivity – pasture/clay loam 0.025–0.41 cm/h
hcnd_CCL Soil saturated hydraulic conductivity – cotton/clay loam 0.025–0.41 cm/h
hcd_PnCL Soil saturated hydraulic conductivity – pine/clay loam 0.025–0.60 cm/h
hcd_PnSL Soil saturated hydraulic conductivity – pine/silt loam 0.025–0.2 cm/h
hcnd_CSL Soil saturated hydraulic conductivity – cotton/silt loam 0.07–1.5 cm/h
hcnd_PSL Soil saturated hydraulic conductivity – pasture/silt loam 0.08–1.3 cm/h
ch_rough Channel roughness coefficient 0.0275–0.0375
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parameter estimation engine saw each of them to be of equal
importance at the beginning of the parameter estimation process.

3.3. GSSHA model description

The methodologies discussed in the preceding sections were
further demonstrated by applying them to the calibration of
a GSSHA hydrologic model for the Goodwin Creek Experimental
Watershed (GCEW) (Senarath et al., 2000; Downer and Ogden,
2003b). As with Senarath et al. (2000), spatially varied rainfall and
runoff data measured at the outlet of Goodwin Creek for the period
22 May 1982–02 July 1982 were used to calibrate the GSSHA GCEW
hydrologic continuous simulation model. Although available, no
data from interior stream flow gauges were used to calibrate the
model. The model was calibrated against hydrographs recorded at
gauging station 1 only. The objective function was composed of
a single observation group defined as the sum of weighted squared
differences between the 233 modeled and observed transformed
flows, with all weights assigned a value of 1.0. In order to reduce
heteroscedascity, the Box–Cox transformation, TðQÞ ¼ ððQ þ 1Þl �
1Þ=l with l¼ 0.3 (Box and Jenkins, 1976; Misirli et al., 2003), was
employed to transform the observed and modeled flows. Table 3
lists the names and meanings of the sixteen GSSHA adjustable
model parameters. The logs of the adjustable parameters were
estimated instead of their native values.

4. Efficiency of the secant version of the LM method

The three previously mentioned environmental model struc-
tures were employed to examine efficiencies associated with vari-
ations of our Secant LM (SLM) implementation relative to
a conventional model independent LM application wherein the
column space of the model sensitivity matrix is fully updated at
each optimization iteration. For each of the three model structures,
using MICUT, we performed thirty LM inversions and thirty SLM
inversions for each variation considered, and in each case starting
Table 4
Mean and standard deviation of final objective function value and mean total model calls
searches with the eight parameter HSPF hydrologic model.

Full update (LM) Broyden upd

No full upda
updating

Mean of final objective function value 26.9 31.6
Standard deviation of final objective function value 5.7 7.0
Mean number of total model calls 367 62
from the same initial points. Each individual trial; however, used
a different initial guess. The mean number of model calls required
to complete the thirty inversions, mean final objective function
values, and the mean of their standard deviations are summarized
in Tables 4–6 for the HSPF, FASST, and GSSHA models, respectively.
Moreover, we used PEST (Doherty, 2004, 2007a,b), since it report-
edly supports a variation of Secant LM, to repeat the same runs
using the same input control files and initial points.

The three variations of our SLM implementation that we
considered for the eight parameter HSPF hydrologic model ach-
ieved 79%, 69%, and 52% reductions in the mean number of total
model calls relative to our conventional LM application, wherein
a full update for the model sensitivity matrix was computed at each
optimization iteration. All three SLM cases did not employ the
option to fully update the model sensitivity matrix at any point
during the inversion process, but did utilize cyclic updating of zero,
one, or two columns of the model sensitivity matrix at each opti-
mization iteration. The greatest reduction in the mean number of
total model calls was achieved for the variation of SLM that did not
employ full updating or cyclic updating of the model sensitivity
matrix. While the total number of model calls is greatly reduced by
employing our SLM method, there is an associated reduction in
objective function improvement. For example, the variation of SLM
that achieved the largest reduction in total model calls yielded
a mean final objective function value seventeen percent greater
than that achieved using LM. In many cases the model calibration
cost savings will outweigh the possible slight degradation in model
fit. For instance, Fig. 2 contains plots of simulated transformed
flows for the seventh inversion runs of LM and SLM without full or
cyclic updating. They achieved final objective function values of
25.1 and 34.2, respectively. These final objective function values are
better and worse, respectively, than their associated mean values of
26.9 and 31.6 reported in Table 4. The simulated hydrographs dis-
played in Fig. 2, together with their observed counterparts, provide
a basis for visually comparing calibration results associated with
final objective function values commensurate with the computed
using LM and variations of the secant version of LM. Results are based on thirty local

ate (SLM)

te & no cyclic Cyclic updating with 1 column; no full
update

Cyclic updating with 2
column; no full update

29.2 26.2
6.0 5.0

94 142



Table 5
Mean and standard deviation of final objective function value and mean total model calls using LM and variations of the secant version of LM. Results are based on thirty local
searches with the ten parameter FASST model.

Full update
(LM)

Broyden update (SLM)

No full update & no
cyclic updating

With full update but
no cyclic updating

Cyclic updating with 1
column; no full update

Cyclic updating with 5
column; no full update

Mean of final objective function value 735 1007 928 883 870
Standard deviation of final objective function value 700 725 714 709 710
Mean number of total model calls 307 48 144 79 179

Table 6
Mean and standard deviation of final objective function value and mean total model
calls using LM and variations of the secant version of LM. Results are based on thirty
local searches with the sixteen parameter GSSHA model.

Full update
(LM)

Broyden update (SLM)

No full update & no
cyclic updating

Mean of final objective function value 64.0 66.9
Standard deviation of final objective function

value
4.9 7.0

Mean number of total model calls 426 60
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means for the thirty trials for LM and SLM without full or cyclic
updating. The hydrograph obtained using SLM was achieved with
an 88% reduction in total model calls relative to its LM counterpart,
also shown. Based on thirty trials, the SLM implementation in PEST
(Doherty, 2004, 2007a,b), using the recommended input control file
value for employment of Broyden updates, achieved a 32% reduc-
tion in total model calls relative to its conventional LM
implementation.

Four variations of our implementation of SLM were considered
with the ten parameter FASST state-of-the-ground model, and all
four included cyclic updating of zero, one, or five columns of the
model sensitivity matrix at each optimization iteration. The case
that did not include cyclic updating evaluated both the option to
and not to include a full update of the model sensitivity matrix at
a pre-specified point during the inversion process. The single SLM
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Fig. 2. Observed and simulated HSPF hydr
case that did include full updating of the model sensitivity matrix
activated this option when the ratio of the new and old objective
function values was greater than one. A reduction of 83%, 71%, and
36% in the mean number of total model calls was achieved for the
ten parameter FASST state-of-the-ground model when employing
cyclic updating with zero, one, or five columns of the model
sensitivity matrix at each optimization iteration. No cyclic updating
together with activation of a full update as noted above resulted in
a 47% reduction in total model calls. We expected to see the mean of
the final objective function for the SLM case that did include a full
update to be closer to the mean obtained from the thirty trials for
the conventional LM case. Two possible reasons for the observed
difference with our expectations could be objective function
granularity and competing interests with respect to inversion
stopping criteria and activation criteria for fully updating X. That is,
full updating may have been activated too late in the inversion
process. The SLM implementation in PEST (Doherty, 2004,
2007a,b), using the recommended input control file value for
employment of Broyden updates, resulted in a 39% increase in total
model calls relative to conventional LM.

Table 6 summarizes the two thirty trial numerical experiments
that were conducted with the sixteen parameter GSSHA hydrologic
model using our independent implementations of LM and SLM. The
single SLM variation considered did not include a cyclic or full
update of the model sensitivity matrix. The mean number of total
model calls was reduced by 84% relative to the conventional LM
application. Fig. 3 is a plot of the hydrographs associated with the
sixth of the thirty trials for LM and SLM, which achieved final
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Fig. 3. Observed and simulated GSSHA hydrographs for trial six of thirty.
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objective function values of 65.8 and 67.6, respectively. These final
objective function values that were obtained for the sixth inversion
runs for LM and SLM are comparable to the means obtained from all
thirty trials. The SLM implementation in PEST (Doherty, 2004,
2007a,b), using the recommended input control file value for
employment of Broyden updates, achieved a mean value of 608 for
total model calls, which compares to a mean value of 421 when
conventional LM was applied.
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Fig. 4. Comparison of global optimization methods on the HSPF mo
These case studies show that it is possible to find locally
optimal parameter sets for model calibration at greatly reduced
cost as compared to the standard LM method using full finite-
difference updates of the Jacobian matrix. The Secant LM method,
or SLM, achieved model run savings of anywhere from 36% to 84%
with little or no difference in the value of the objective function at
the local minimum. In Section 5 we examine global search
strategies.
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5. Efficiency of MLSL versus global optimization in PEST

To examine their relative efficiencies, thirty trials of MLSL,
Trajectory Repulsion, CMAES, and SCE were conducted with each of
the three distinct environmental model structures. MLSL and
Trajectory Repulsion as implemented in MICUT were employed in
the analysis. While PEST includes a Trajectory Repulsion imple-
mentation, the Trajectory Repulsion implementation from MICUT
was utilized so that the local search implementation (SLM) would
be identical to that employed with MLSL. CMAES and SCE were
applied as interfaced to PEST (Doherty, 2004, 2007a,b). The
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Fig. 6. Comparison of global optimization methods on the GSSHA m
processed data contained in Figs. 4–6 and Tables 7–9 were obtained
by computing the average over thirty trials of the best objective
function value obtained after a specified number of model calls. We
wish to point out that we are very wary of comparing different
software packages in this manner, for a package, and the method-
ology which it encapsulates, always performs best when operated
by its designers. This is because program settings, particularly those
pertaining to termination and convergence criteria, can have a huge
effect on the performance of a method; a non-expert in the use of
a particular package may not be aware of the optimal settings to
use, especially in difficult cases. Hence, we do not pretend that the
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Table 7
Mean and length of one side of the 95% confidence interval for the best solution for the HSPF model for a specified number of model calls. Results based on thirty trials. Note:
nominal algorithm performance for CMAES and SCE.

Algorithm 250 simulations 500 simulations

Mean 95% confidence interval Mean 95% confidence interval

MLSL–SLM 23.533 0.033 23.510 0.005
Trajectory Repulsion – 240 pre-inversion runs 31.246 1.242 23.571 0.100
Trajectory Repulsion – 20 pre-inversion runs 23.561 0.040 23.532 0.034
SCE (4 complexes) 30.455 1.540 25.768 0.802
CMAES (l¼ 11) 27.678 0.639 25.833 0.457
SCE (14 complexes) 41.829 3.274 30.571 1.185

Table 8
Mean and length of one side of the 95% confidence interval for the best solution for the FASST model for a specified number of model calls. Results based on thirty trials. Note:
nominal algorithm performance for CMAES and SCE.

Algorithm 100 simulations 300 simulations

Mean 95% confidence interval Mean 95% confidence interval

MLSL–SLM 143.077 11.046 125.494 1.075
Trajectory Repulsion – 20 pre-inversion runs 167.102 24.930 125.892 0.717
CMAES (l¼ 11) 156.732 8.714 145.275 7.607
SCE (5 complexes) 310.571 31.220 153.054 7.957
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results presented below provide a comprehensive basis for
assessment of the comparative performance of SCE–PEST, CMAES–
PEST and MLSL/MICUT. We hope, however, that they do provide
a basis for at least a ‘‘ball park’’ comparison of the methods for the
particular calibration cases considered herein.

For the eight parameter HSPF hydrologic model, and for the
MLSL and Trajectory Repulsion global search methods, the local
search procedure was our SLM implementation with two column
cyclic updating specified at each optimization iteration. The option
to fully update the model sensitivity matrix at a pre-specified point
in the inversion process was deactivated. For the HSPF model, two
sets of thirty trials were conducted using Trajectory Repulsion, one
with 240 pre-inversion runs and one with twenty pre-inversion
runs. Two sets of thirty trials were also performed using SCE, one
with four complexes and one with fourteen complexes. For the
MLSL application, the sample size, N, was specified to be twenty,
the parameter for determining the reduced sample set, g, was set at
0.1, and s was set to four. Because CMAES is sensitive to the pop-
ulation size, l (Hansen and Kern, 2004), three sets of thirty trials
were performed using CMAES, one with a PEST computed default
value of eleven for the population size, and then two additional
trials with the population specified to be fifty and one hundred,
respectively. In each case for CMAES, the number of parents was
specified to be equal to one half the population size. For the MLSL
and Trajectory Repulsion trials, all inversion runs stopped because
three local searches had been performed with no objective function
improvement; wherein the improvement fraction judged to be
negligible was specified to be 0.0025. For the SCE runs with 4/14
complexes, the maximum number of trials allowed for each opti-
mization run was specified to be 50,000/25,000, and the number of
shuffling loops over which the objective function must improve by
the specified percentage of 0.5, or else the optimization will be
terminated, was set to five. For each of the thirty CMAES global
optimization runs, the following stopping criteria were specified:
Table 9
Mean and length of one side of the 95% confidence interval for the best solution for the GS
nominal algorithm performance for CMAES and SCE.

Algorithm 350 simulations

Mean 95%

MLSL–SLM 58.693 0.2
Trajectory Repulsion – 320 pre-inversion runs 78.819 2.7
CMAES (l¼ 13) 62.720 0.9
SCE (5 complexes) 74.647 1.2
(1a) Relative objective function improvement: 0.001, (1b) Number
of iteration to which this applies: 40; (2a) Maximum relative
parameter change: 0.001, (2b) Number of iterations to which this
applies: 40; (3a) Relative generated objective function difference:
0.0025, (3b) Number of iterations to which this applies: 3; (4)
Maximum number of iterations: 400. With CMAES, some of the
global optimization trials were prematurely terminated, but only
after the optimization process had progressed to a point wherein
the known global min. objective function value (Skahill and
Doherty, 2006) was in fact identified.

Fig. 4 and Table 7 summarize the results for the thirty trials
associated with each of the four global optimization methods that
were applied to the eight parameter HSPF model. CMAES, with the
population size equal to eleven, performs the best with respect to
efficiently reducing the objective function at the earliest stages of
the optimization; however, it quickly plateaus. And after 1800
model calls, the mean of the best objective function value is 24.308,
which is above the global objective function minimum of 23.5
(Skahill and Doherty, 2006). In contrast, both MLSL and Trajectory
Repulsion with 20 pre-inversion runs have effectively identified the
global minimum objective function value after 250 and 500 model
calls, respectively. SCE with 14 complexes was inefficient; however,
after approximately 3800 model calls the mean of the best objec-
tive function value had identified, with 95% confidence, the global
minimum objective function value. Naturally, SCE with 4 complexes
was more efficient but less effective at finding the global minimum
objective function value (Duan et al., 1994).

Fig. 4 shows that Trajectory Repulsion with twenty pre-
inversion runs appears to be the most efficient global search
method among those tested, but it should be noted that this is not
how Trajectory Repulsion would typically be applied. Trajectory
Repulsion is not iterative, so its success is dependent on the initial
sample size. A more typical application of Trajectory Repulsion
would utilize twenty to fifty times the number of parameters as the
SHA model for a specified number of model calls. Results based on thirty trials. Note:

600 simulations

confidence interval Mean 95% confidence interval

47 58.455 0.239
11 58.732 0.165
84 60.827 0.817
89 67.197 1.401



Table 10
List of acronyms.

Acronym Brief definition

AMALGAM A Multi-Algorithm Genetically Adaptive Multiobjective Optimization method
CMAES Covariance Matrix Adaption Evolutionary Strategy Optimization method
FASST Fast All-season Soil Strength State-of-the-ground model
GSSHA Gridded Surface Subsurface Hydrologic Analysis Watershed model
HSPF Hydrological Simulation Program – FORTRAN Watershed model
LM Levenberg–Marquardt method Derivative-based local search method
MICUT Model Independent Calibration and Uncertainty Analysis Toolbox Optimization and uncertainty analysis software
MLSL Multi-Level Single Linkage Stochastic global optimization method
PEST Model Independent Parameter Estimation Optimization and uncertainty analysis software
SCE Shuffled Complex Evolution Global optimization method
SLM Secant Levenberg–Marquardt method Derivative-based local search method
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initial sample size. Such an example, with 240 pre-inversion runs
are shown in Fig. 4, where it can be seen to not be as efficient as
MLSL. If a small initial sample size is used with Trajectory Repul-
sion, it may fail to find the global minimum. To demonstrate this,
MLSL and Trajectory Repulsion were both applied to the data fitting
problem

P86
i¼0ððsinðm1xiÞ þ sinðm2xiÞÞ � ðsinð2=3Þxi þ sinðxiÞÞÞ2

where xi ¼ 3:1þ 0:15i, and m1;m2˛ð0;2�. MLSL was applied with
N, g, and s equal to 10, 0.1, and 4, respectively, and Trajectory
Repulsion was applied with ten pre-inversion runs. Based on thirty
trials, similar efficiencies were exhibited for both MLSL and
Trajectory Repulsion; however, Trajectory Repulsion failed to find
the global minimum objective function value four times; whereas,
MLSL was successful for all thirty trials. The iterative nature of the
global phase for MLSL provides more insurance with respect to its
reliability relative to Trajectory Repulsion.

For the ten parameter FASST model, both MLSL and Trajectory
Repulsion used SLM for local search with one column cyclic
updating specified at each optimization iteration. The option to
fully update the model sensitivity matrix at a pre-specified point in
the inversion process was deactivated. Input for application of MLSL
and CMAES was the same as that previously described for the HSPF
model. With MLSL and for all but one trial of global search with
Trajectory Repulsion, all inversion runs stopped because three local
searches had been performed with no objective function
improvement; wherein the improvement fraction judged to be
negligible was specified to be 0.0025. In one trial of Trajectory
Repulsion, the global search was stopped because the maximum
specified number, ten, of local searches had been performed. For
SCE, the maximum number of function evaluations was set to 1500,
and all thirty trials stopped due to this criterion. The same stopping
criterion listed above for CMAES with HSPF were also applied with
FASST, with the exception that the maximum number of iterations
was set to 1500.

Fig. 5 and Table 8 summarize the results for the thirty trials
associated with each of the four global optimization methods that
were applied to the ten parameter FASST model. As with HSPF,
CMAES performed the best with respect to reducing the objective
function at the earliest stages of the optimization; however, its
performance quickly plateaus. For example, with CMAES, at
approximately 1800 model calls, with 95% confidence, the mean of
the best value is approximately equal to that which was obtained
using MLSL–SLM with only 300 model calls. SCE is inefficient
relative to both MLSL and Trajectory Repulsion. If a predetermined
computational budget of five hundred model calls were to be
specified, then the data processed from the thirty trials suggest that
MLSL–SLM would be the best choice relative to the other three
methods.

The global search comparisons for the thirty trials of the sixteen
parameter GSSHA model are similar and are summarized in Fig. 6
and Table 9. Again, CMAES is more efficient at reducing the
objective function in the initial phases, but MLSL with SLM typically
outperforms CMAES after only eighty model runs.
6. Conclusions

This article has described an independent implementation of
the LM method included in MICUT, which accommodates the
model independent PEST protocol (Doherty, 2004, 2007a,b) which
is now widely used for environmental model calibration. Because
environmental models are often very costly to run it is important to
improve the efficiency of both local and global search methods used
to calibrate these models. To improve the efficiency of the local
searches, we implemented a secant version of LM (SLM) that
typically requires far fewer model calls than the conventional LM
method to achieve nearly the same objective function reduction.
We also compared the efficiencies of our model independent LM
and SLM implementations with related implementations in PEST
(Doherty, 2004, 2007a,b). Our efficiency studies utilized three
distinct environmental model structures: HSPF, FASST, and GSSHA.
Based on our thirty trials with each of the three model structures,
we found that we could find local minima using our SLM imple-
mentation with 36–84% fewer model runs than a conventional
model independent LM application, and with only modest reduc-
tions in objective function improvement. In addition, we discov-
ered that while PEST (Doherty, 2004, 2007a,b) reportedly does
include the ability to utilize Broyden updates, that implementation
does not realize the complete efficiency gains that are possible with
a secant version of the LM method. For example, with the FASST and
GSSHA model structures, the SLM implementation of PEST (Doh-
erty, 2004, 2007a,b) required additional model calls. The results
also suggest that implementing adaptive activation of cyclic
updating could possibly achieve additional efficiency gains.

One of the strengths of the LM approach is that in cases of high
parameter insensitivity and correlation the method can be readily
modified by the inclusion of various regularization devices to
maintain numerical stability and robustness; see for example
Menke (1984), DeGroote-Hedlin and Constable (1990), and Tonkin
and Doherty (2005). A further area to explore could be to examine
the efficiency of SLM-based Tikhonov like regularization versus
that of the hybrid method ‘‘SVD Assist’’ described in Tonkin and
Doherty (2005), which was designed to support regularized
inversion for highly parameterized environmental models.

In further consideration of the concern for efficient optimiza-
tion, we also implemented a slight adaptation to MLSL, a stochastic
global optimization method that utilizes our LM and SLM imple-
mentations for local search. We compared the performance of our
implementations of MLSL and Trajectory Repulsion with those of
CMAES and SCE, as interfaced to PEST (Doherty, 2004, 2007a,b).
Based on numerical experiments involving thirty trials with each
global optimization method, and for each of the three model
structures, we recommend MLSL over Trajectory Repulsion for
environmental model independent LM-based stochastic global
optimization. Moreover, the results also suggest potential utiliza-
tion of MLSL over SCE and CMAES, except for the case where only
a very limited computational budget is available, in which case
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CMAES might be preferable. The results further suggest exploring
the development of additional model calibration methods that
blend multiple optimization algorithms, perhaps in the spirit of the
newly developed self-adaptive multi-method search algorithm
AMALGAM (A Multi-Algorithm Genetically Adaptive Multi-
objective) (Vrugt and Robinson, 2007). Clearly, it is almost certainly
possible to tune SCE and CMAES to achieve better performance, but
we are testing these algorithms as they are interfaced to PEST. The
main parameter in CMAES is the population size, l, and increasing it
encourages global exploration at the expense of convergence
speed. Our case studies bear this out. In SCE, there are other things
that could be changed internally (Sorooshian et al., 2007), but as
implemented through PEST the primary parameter is the number
of complexes (Duan et al., 1994).

The methods that were described and evaluated herein,
implemented in a manner to accommodate the popular PEST model
independent and input control file protocol (Doherty, 2004,
2007a,b), fill in existing gaps (observed inefficiencies) associated
with that software. Thus, the software described herein, available
within MICUT, provides users of the noted popular PEST software
with greater choice, and the potential for more efficient LM-based
inverse model applications.

No single optimization algorithm can be expected to be the best
for all problems. MICUT’s LM-based optimization methods are
a faster, compatible alternative to PEST’s LM capabilities for cali-
bration of environmental models. By adopting the popular PEST
model independent interface, MICUT’s LM-based optimization
methods can easily be used by the modeling community for
problems in which the derivatives are not too badly behaved and
the objective function landscapes are not dominated by noise.
There are many other algorithms that may be used in those
circumstances. For users facing these complexities on a fixed
computational budget, the Dynamically Dimensioned Search
algorithm (Tolson and Shoemaker, 2007) can be utilized. Genetic
algorithms or evolutionary strategies may be used, such as CMAES
with a large population size (Hansen and Kern, 2004), or iteratively
increasing population size (Auger and Hansen, 2005), or the
recently developed AMALGAM (Vrugt and Robinson, 2007) which
has been shown to be exceptionally competitive on a suite of test
problems. Another algorithm which has recently been shown to
have fast convergence in the early stages while being able to reli-
ably locate the global minimum is a specially tuned version of SCE
(Sorooshian et al., 2007). There are, of course, many optimization
algorithms and we have only mentioned a few here. For a more
complete review and comparison of some algorithms in the
watershed modeling context see the recent work of Shoemaker
et al. (2007).
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