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KEYWORDS Summary The Gauss—Marquardt—Levenberg (GML) method of computer-based parameter esti-
Calibration; mation, in common with other gradient-based approaches, suffers from the drawback that it may
Local minima; become trapped in local objective function minima, and thus report ‘‘optimized’’ parameter val-
Parameter estimation; ues that are not, in fact, optimized at all. This can seriously degrade its utility in the calibration of
Objective function; watershed models where local optima abound. Nevertheless, the method also has advantages,
Watershed modeling chief among these being its model-run efficiency, and its ability to report useful information on

parameter sensitivities and covariances as a by-product of its use. It is also easily adapted to main-
tain this efficiency in the face of potential numerical problems (that adversely affect all param-
eter estimation methodologies) caused by parameter insensitivity and/or parameter correlation.

The present paper presents two algorithmic enhancements to the GML method that retain its
strengths, but which overcome its weaknesses in the face of local optima. Using the first of these
methods an ‘‘intelligent search’’ for better parameter sets is conducted in parameter subspaces
of decreasing dimensionality when progress of the parameter estimation process is slowed either
by numerical instability incurred through problem ill-posedness, or when a local objective func-
tion minimum is encountered. The second methodology minimizes the chance of successive GML
parameter estimation runs finding the same objective function minimum by starting successive
runs at points that are maximally removed from previous parameter trajectories. As well as
enhancing the ability of a GML-based method to find the global objective function minimum,
the latter technique can also be used to find the locations of many non-global optima (should they
exist) in parameter space. This can provide a useful means of inquiring into the well-posedness of a
parameter estimation problem, and for detecting the presence of bimodal parameter and predic-
tive probability distributions.
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The new methodologies are demonstrated by calibrating a Hydrological Simulation Program-
FORTRAN (HSPF) model against a time series of daily flows. Comparison with the SCE-UA
method in this calibration context demonstrates a high level of comparative model run effi-

ciency for the new method.

© 2006 Elsevier B.V. All rights reserved.

Introduction

Computer-based calibration of surface water quantity and
quality models generally involves minimization of an
‘‘objective function’’ — a measure of model-to-measure-
ment misfit. In simple cases this is comprised of differences
between measured and modeled flows at, for example,
daily, hourly or even smaller intervals. In many cases, observed
and modeled flows are transformed (for example through a
Box-Cox transformation) before fitting, and/or residuals are
fitted to an ARMA model prior to formulation of an objective
function, in order to reduce heteroscedascity and temporal
correlation (Box and Tiao, 1973; Box and Jenkins, 1976; Kucz-
era, 1983; Bates and Campbell, 2001). In more complex cases a
multi-criterion objective function is constructed in which dif-
ferent measurement types, or the same measurement type
processed in different ways, comprise separate components
of a composite global objective function (Madsen, 2000; Boyle
et al., 2000; Doherty and Johnston, 2003).

A unique solution to the inverse problem of model cali-
bration can only be guaranteed if the information content
of a calibration dataset is sufficient to allow values to be as-
signed to all parameters for which estimation is sought
through the calibration process. Often this is ensured by
adherence to the so-called *‘principle of parsimony’’ in de-
sign of the inverse problem, whereby the number of param-
eters for which estimated values are sought is kept to a
minimum while at the same time retaining enough parame-
ters to allow a satisfactory fit between model outputs and
field data to be achieved (Hill, 1998). It is often recom-
mended that, prior to model calibration, a sensitivity anal-
ysis be conducted to identify those parameters that are
estimable and those that are not; the latter are then fixed
at realistic values while the ‘‘identifiable’’ parameters are
estimated. Unfortunately however, especially where mod-
els are highly nonlinear, it is the parameter estimation pro-
cess itself that is the final arbiter of parameter
identifiability, for it is not always possible to select an
appropriate subset of parameters for estimation ahead of
actually undertaking the parameter estimation process. If
too few parameters are selected for estimation, the calibra-
tion objective function will not be lowered to the extent
that it possibly could be if other parameters were involved
in the inversion process. However, in some cases the
involvement of these extra parameters may lead to non-
uniqueness in their estimation and, depending on the
parameter estimation package employed, possibly poor per-
formance of that package due to consequential numerical
instability. Furthermore, even if the parameter estimation
process is successful in minimizing the objective function
under these circumstances, the final parameter set will lie

within a long valley that defines the loci of objective func-
tion minima in parameter space. Should such a valley
(rather than a bowl containing a unique minimum) exist,
the parameter estimation package should notify the user
of this, and of the fact that parameter estimates forthcom-
ing from the calibration process are nonunique.

Whether or not an inverse problem is poorly posed, and
whether or not the objective function minimum is elongate
or round, it is rarely possible to avoid the fact that when
calibrating watershed models the objective function will of-
ten contain local minima in addition to its global minimum;
see Duan et al. (1992) for a full discussion of this topic. This
presents challenges to the design of automatic calibration
software, for a modeler who uses such software has the
right to expect that estimated parameter sets result in
the best possible fit between model outputs and field mea-
surements (with due account taken of parameter believabil-
ity). Ideally, however, a modeler would also like to receive
some information from a calibration package on the loca-
tions of non-global minima, especially if these minima are
little different in magnitude from the global minimum,
but are widely separate from it in parameter space. Indeed,
information on the structure of the objective function sur-
face can be of great assistance in allowing a modeler to
qualitatively appraise the linearity and utility of his/her
model, the uncertainty of parameters estimated though
the parameter estimation process, and the information con-
tent of the dataset that is currently available for its calibra-
tion (Sorooshian and Arfi, 1982; Kuczera, 1990).

A further consideration in assessing the performance of a
parameter estimation package is that of run time. Parameter
estimation software, no matter what its algorithmic basis,
must run the model whose task it is to calibrate many times
in the course of minimizing the objective function that is used
to characterize model-to-measurement misfit. Where model
run times are high, model run efficiency of the calibration
process becomes of paramount concern. It is inevitable that
the challenges posed by parameter nonuniqueness and local
objective function minima will lead to the necessity to carry
out more model runs than that required for solution of an in-
verse problem characterized by a convex objective function
surface with a single minimum. However, if the cost of meet-
ing these challenges is too high, a parameter estimation pack-
age may simply be unusable in many modeling contexts,
despite what may be a high degree of numerical robustness.

Choice of parameter estimation package

Much has been written concerning the suitability of various
parameter estimation strategies for calibration of
watershed models; see for example Thyer et al. (1999),
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Madsen et al. (2002), Gupta et al. (2003) and papers cited
therein. In light of the above discussion, desirable features
of a parameter estimation package include the following.

1. It must perform well in numerical contexts where param-
eter nonuniqueness prevails. Moreover, it must inform
the user that the values estimated for at least some
parameters in such contexts are very uncertain.

2. It must find the global minimum of the objective func-
tion, notwithstanding the existence of local minima.
However, it should provide some information to the user
on the existence and/or locations of other minima. In
particular, if a local minimum exists within parameter
space that is not much higher than the global minimum,
but that yields more realistic parameter estimates, the
user must be made aware of this, for the higher minimum
may be preferable.

3. To be generally useable, it must perform these tasks
using as small a number of model runs as possible.

In accommodating the local optima problem, optimiza-
tion strategies based on global search algorithms have an
obvious appeal. The shuffled complex evolution (SCE-UA)
method developed by Duan et al. (1992) has gained a justi-
fiably good reputation as an efficient global optimization
method and, as a result of this, has found widespread use
in the calibration of watershed and other types of models.
Its capabilities have been extended by combining its global
search engine with an adaptive Markov Chain Monte-Carlo
(MCMC) algorithm (Vrugt et al., 2003); this extension of its
capabilities allows exploration of parameter space in the
vicinity of the global minimum. However, in spite of the
numerical efficiencies of SCE-based algorithms when com-
pared with other global search methodologies, the number
of model runs required for their implementation can still
make them impractical for use with many commonly-used
models because of the run-times required by these models;
furthermore, run-time penalties tend to increase dramati-
cally as the number of parameters requiring estimation in-
creases. Another consideration is that MCMC methods can
experience difficulties in contexts of high parameter corre-
lation. It has also been the experience of the authors that
these methods can encounter difficulties in accommodating
multi-modal probability distributions arising out of the exis-
tence of two or more objective function minima of about
the same magnitude but widely separated in parameter
space.

Gradient-based methods such as the Gauss Marquardt
Levenberg (GML) method have been criticized for poor per-
formance in the face of local optima (Gupta et al., 2003).
Use of such methods can lead to the determination of a
parameter set that corresponds to a local, rather than glo-
bal, objective function minimum, leaving the user with no
idea of whether another location exists within parameter
space for which the objective function is lower. However,
certain features of the GML method make it difficult to re-
ject outright as a serious contender for use in watershed
model calibration. These features include the following.

1. In calibration contexts where local optima are rare or
nonexistent, the GML method is parsimonious in terms
of its model run requirements.

2. Estimates of parameter uncertainty, correlation and
(in)sensitivity are readily available as a by-product of
its use both during and after the parameter estimation
process.

3. In cases of high parameter insensitivity and correlation,
the method can be readily modified by the inclusion of
various regularization devices to maintain numerical sta-
bility and robustness; see for example Menke (1984),
DeGroote-Hedlin and Constable (1990), Tonkin and Doh-
erty (2005), and many other references particularly from
the geophysical literature. The model-independent
parameter estimation package PEST (Doherty, 2005) pro-
vides both Tikhonov and truncated singular value decom-
position techniques as regularization alternatives.

4. Various enhancements can be made to the GML method
that allow it to carry out linear or nonlinear post-calibra-
tion predictive uncertainty analysis with model run effi-
ciencies that far exceed those of MCMC methods
(Vecchia and Cooley, 1987).

It follows that if a methodology can be found that retains
the advantages of the GML method, while eradicating its
propensity to be trapped in local optima, such a method
would deserve serious consideration for use in watershed
model calibration.

Brief overview of the GML method

Though used extensively in the calibration of nonlinear
models, the theoretical underpinnings of the GML method
have their roots in linear parameter estimation theory. That
theory, and its extension to nonlinear parameter estima-
tion, will now be briefly described.

Let the matrix X represent the action of a linear model.
Let the vector p represent its m parameters, the vector h
represent the n observations (or ‘‘processed observations’’
as discussed above) comprising the calibration dataset, and
the n-dimensional vector ¢ represent the noise associated
with those (processed) observations. The relationship be-
tween these quantities is embodied in the equation:

Xp=h+e (1)
Let an objective function ¢ defined as:-
@ = (h—Xp)'Q(h — Xp) (2)

serve as a measure of model-to-measurement misfit, where
Q is proportional to the inverse of C(¢), the covariance ma-
trix of measurement noise. It is normally the purpose of
measurement transformations discussed above to ensure
that this is a diagonal matrix.

It can be shown that minimization of @ is achieved for p
calculated as

p = (X'QX)'X‘Qh (3)

and that the uncertainty associated with these estimates of
p can be characterized by the covariance matrix C(p) calcu-
lated as:-

C(p) = a2(X'QX)~" (4)

where the ‘‘reference variance

a7t = @min/(n — m) (5)

2 is calculated as
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Eq. (4) can be used for the computation of parameter con-
fidence intervals; where the sensitivities of a prediction to
model parameters are known, a slight extension of this for-
mula then allows calculation of predictive confidence
intervals.

When the X'QX matrix of Eq. (3) cannot be inverted (this
being a direct result of parameter nonuniqueness), a num-
ber of methods are available for nevertheless obtaining a
solution to the inverse problem. One of the better known
of these methods is truncated singular value decomposition
(TSVD). This method allows estimates of orthogonal linear
combinations of parameters spanning the ‘‘estimable sub-
space’’ of parameter space to be made, this subspace being
of smaller dimensions than the number of parameters fea-
tured in the parameter estimation problem. The dimension-
ality of this subspace can be directly chosen by the user;
alternatively the user can allow the parameter estimation
package to choose its dimensionality itself on the basis that
the post-truncation ratio of highest to lowest eigenvalue of
the X‘QX matrix (a measure of its condition number) be no
greater than a specified amount (normally between 10° and
107). Parameter combinations comprising the inestimable
*‘calibration null space’’ are left unaltered from their initial
values. If parameters are scaled according to their innate
variability, this leads to maximum likelihood estimates for
both estimable and inestimable parameter combinations.
See Moore and Doherty (2005) for details.

Where a model is nonlinear, implementation of Eq. (3)
becomes an iterative process which commences from a
user-supplied set of initial parameter estimates. Further-
more, the Jacobian matrix J (this being the sensitivity of
every model output for which there is a corresponding ele-
ment of h with respect to every adjustable parameter) re-
places X. The pre-inversion J‘QJ term of Eq. (3) is then
supplemented by the addition of a ‘‘Marquardt lambda’’
to its diagonal elements. This increases efficiency in nonlin-
ear contexts, and acts as a rudimentary numerical stabiliza-
tion device where encroaching nonuniqueness raises the
condition number of this matrix and thereby threatens its
ability to be inverted. The nonlinear parameter estimation
process then becomes one of successive linearization and
calculation of a parameter upgrade vector using Eq. (3);
the upgraded parameter set then marks the spot at which
the next linearization takes place. The process is termi-
nated when the objective function is minimally lowered
over two or more successive iterations, and/or when param-
eter values undergo minimal change between iterations.

One pronounced advantage of the GML method is that it
can generally complete a parameter estimation process
with an extremely high level of model run efficiency, even
if elements of the Jacobian matrix must be computed using
finite differences based on model runs with incrementally
varied parameter values. Indicators of parameter non-
uniqueness resulting from ill-posedness of the parameter
estimation problem are available through the calculated
condition number of the X‘QX matrix and from the C(p) ma-
trix calculated through inversion of this matrix. Either of
these matrices can also indicate which parameters are
insensitive and/or correlated and are therefore responsible
for the ill-posedness of a particular inverse problem. Such
information is vital if the inverse problem is to be re-formu-
lated in such a way as to make it nhumerically tractable.

As mentioned above, the chief disadvantage of the GML
method is its propensity to find local minima rather than
the global minimum. Thus, if there are different ‘‘regions
of attraction’’ in parameter space, iterative solution of
Eq. (3) will lead to just one of possibly many objective func-
tion minima, the particular one that is found on any partic-
ular implementation of the method being dependent on the
user-supplied set of parameters from which the iterative
solution process was started. Malperformance of the meth-
od is further exacerbated by the fact that local minima can
occur as ‘‘pits’’ in the objective function surface, this pos-
sibly forestalling the method’s ability to locate the objec-
tive function minimum that may dominate a particular
region of parameter space, whether or not this is the global
objective function minimum.

We now present two enhancements to the GML scheme
which promote its ability to operate in parameter estima-
tion contexts in which all of these phenomena occur, viz.
parameter nonuniqueness leading to elongate objective
function minima, the existence of different regions of
attraction in parameter space surrounding separate objec-
tive function minima, and local *‘pits’’ within the objective
function surface defining these regions of attraction. The
‘‘trajectory repulsion’’ scheme described below provides
some assistance in overcoming the second of these prob-
lems. ‘‘Temporary parameter immobilization’’, also de-
scribed below, is a useful tool for accommodating the first
and third of these phenomena. (Existing regularization
schemes such as TSVD can also easily accommodate the first
of these problems.) Collectively, these enhancements allow
successful and efficient use of the GML method in surface
water modeling contexts where less robust implementations
of the method have encountered severe difficulties in the
past.

Parameter estimation package

In the current study GML-based parameter estimation was
implemented using the PEST parameter estimation package
(Doherty, 2005). PEST is a *‘model-independent’’ parameter
estimator, its model-independence being based on the fact
that it communicates with a model through the model’s own
input and output files. Hence, use of PEST with a particular
model can be carried out without the requirement that the
model be recast as a subroutine or undergo any other
changes. In fact, the ‘‘model’’ calibrated by PEST can even
be a series of programs encapsulated in a batch or script
file.

Most models are not programmed to calculate deriva-
tives of their outputs with respect to their parameters for
filling of the Jacobian matrix required for implementation
of the GML method. Hence, PEST calculates these deriva-
tives itself using finite differences. During each iteration
of the GML method, PEST varies each parameter incremen-
tally from its currently estimated value and re-runs the
model. The ratio of model output differences to parameter
differences approximates the derivative. For greater accu-
racy in derivatives calculation, parameter values can be
both incremented and decremented. Using this ‘‘central
difference’’ scheme, derivatives can be approximated by
taking differences between incremented and decremented
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model outputs and parameter values, or by including cur-
rent parameter values and corresponding model outputs in
a three-point quadratic interpolation scheme. In normal
PEST operation, derivatives are first calculated using for-
ward differences only; an automatic change to a more
run-expensive central difference scheme is made when pro-
gress of the parameter estimation process appears to slow
later in a PEST run.

Implementation of a finite-difference derivatives scheme
requires that a user select an appropriate parameter incre-
ment. If an increment is too large, the finite difference ratio
through which derivatives are calculated is a poor approxi-
mation to the derivative. If the increment is too small,
numerical precision is lost as numbers which are similar in
magnitude are subtracted from each other. In many param-
eter estimation contexts an increment of one percent of
current parameter values can be employed for forward-
difference-based derivatives computation, while twice this
can be used for central-difference-based derivatives
computation.

The trajectory repulsion scheme

The robust performance of the SCE-UA method, as well as
that of most other global search methods, is based on two
principles. These are as follows.

1. The injection of a certain degree of randomness into the
parameter estimation process allows it to go in direc-
tions that may eventually prove fruitful, even if the
attractiveness of a new direction may be shielded by
the promise of local, more immediate, rewards.

2. The benefits of randomness are partly offset by the cost
of making mistakes. Hence, by incorporating into a glo-
bal optimization process an ability to learn from mis-
takes, the likelihood of incurring large run-time
penalties through repeatedly making the same (or a sim-
ilar) mistake is minimized.

Based on these principles, an enhancement of the GML
method was developed in order to increase the capacity
of this method to work well in contexts where local minima
occur. The software package that encapsulates this
enhancement takes the form of a ‘‘PEST driver’’, in which
GML parameter estimation is still conducted by PEST (and
can thus employ one or more of PEST’s inbuilt devices for
numerical stabilization of difficult problems and, like PEST,
is model-independent), but in which successive PEST runs
are undertaken under intelligent control. The package is
presently named ‘‘PD_MS2’’ (for **PEST Driver — Multiple
Starting Points 2’’).

PD_MS2 commences execution by running the model that
it must calibrate N times. PD_MS2 employs random parame-
ter values for these runs; these are sampled from a uniform
or log-uniform distribution defined between user-supplied
upper and lower parameter bounds. Experience indicates
that between 20 and 50 times the number of parameters
requiring estimation is a suitable value for N.

PD_MS2 next ranks the outcomes of the N random runs in
order of increasing objective function value. It then disre-
gards all runs for which the objective function is above

the median. Next, it initiates a PEST run, with initial values
for this run being equal to the random parameter sample for
which the objective function was lowest. PD_MS2 monitors
this run, recording optimized parameter values, as well as
parameter values calculated by PEST during every iteration
of the nonlinear GML method which it implements. Nor-
mally, between five and fifteen such iterations are required
to reach an objective function minimum. Each such itera-
tion requires that at least as many model runs be under-
taken as there are parameters requiring estimation (in
order to fill the Jacobian matrix), plus a few more (for test-
ing the effects of different Marquardt lambdas on the
parameter upgrade process); see Doherty (2005) for details.

After completion of the first PEST run, another PEST run
is initiated. For this run, it is desired that the chances of
finding the same objective function minimum as that which
was encountered on the first PEST run be minimized. Hence,
from among the N/2 retained pre-calibration samples of
parameter space, a starting point is chosen that is maxi-
mally distant from any point on the parameter trajectory
taken by the initial PEST run. Selection of such a starting
point is based on the rationale that the closer is a point in
parameter space to the previous parameter trajectory,
the more likely it is to lie in the ‘‘catchment area’’ of the
previously-encountered objective function minimum. (Note
that ‘‘distance’’ as measured in parameter space is a
Euclidean metric, normalized in each direction of parame-
ter space by the range of the pertinent parameter.)

After the next PEST run is complete, another parameter
set is selected from the N/2 potential starting points. The
parameter set selected is that which is maximally distant
from all previous points on all previous trajectories. The
process is then repeated.

A number of criteria can be used to terminate the
PD_MS2 global optimization process. Where model run effi-
ciency is an issue, PD_MS2 can be instructed to cease execu-
tion if the objective function has not been lowered over the
last M; PEST runs. Alternatively, PD_MS2 can be asked to
undertake M, PEST runs regardless of the outcomes of these
runs. If M, is moderate to large, this enables PD_MS2 to find
the locations of many local optima in parameter space
(should these exist), thus providing the user with powerful
insights into the structure of the objective function surface.

It is worth noting that, as well as providing insights into
the ‘‘broad scale’’ structure of the objective function
response surface, PD_MS2 (through its use of PEST) provides
insights into the structure of this surface in the vicinity of
the global objective function minimum as well. As has
already been mentioned, the GML method can provide param-
eter sensitivities and can calculate a linear approximation
to the parameter covariance matrix, as well as statistics -
derived from this matrix including correlation coefficients
and eigenvectors/eigenvalues of the covariance matrix.

Temporary parameter immobilization

‘“Temporary parameter immobilization’’ (or ‘‘automatic
user intervention’’ as it is referred to in the PEST manual,
but will be referred to as “TPI’’ herein) can be used as both
a regularization device and as a device for conducting
ordered attempts to break out of local pits in parameter
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space. PEST only implements this scheme if the objective
function improvement attained during a particular iteration
of the GML process is less than a user-supplied threshold
(normally 10%). In implementing this scheme PEST selects
the most insensitive parameter, and temporarily removes
it from the optimization process. With the dimensionality
of estimable parameter space thus reduced (and with the
most troublesome parameter being temporarily removed
from the parameter estimation process), the parameter up-
grade vector (which now has no component in the subspace
of parameter space occupied by the temporarily frozen
parameter) is re-calculated using Eq. (3). A model run is
then conducted on the basis of the trial parameter set thus
calculated in order to compute the objective function asso-
ciated with this parameter set. Unless the objective func-
tion has fallen by a significant amount, the next most
troublesome parameter is temporarily frozen (in addition
to the first), and the parameter upgrade calculation proce-
dure is repeated. After a number of parameters have been
successively frozen in this manner (with already frozen
parameters maintained in their frozen state), the process
is abandoned, and then re-commenced using a different va-
lue of the Marquardt lambda. For a parameter estimation
problem involving m parameters, up to half of these param-
eters may be progressively frozen for up to three Marquardt
lambdas, this requiring 3m/2 model runs for that iteration
for the testing of parameter upgrade vectors in addition
to the (depending on whether forward differences or central
differences are employed) m or 2m model runs required for
filling of the Jacobian matrix. (Note however that the pro-
cess is immediately abandoned if a suitable objective func-
tion improvement is obtained.) Thus, implementation of the
TPl process may lead to the requirement that between
twice and three times (at the very most) the number of
model runs be carried out compared to normal GML opera-
tions. However, experience has demonstrated that on most
occasions in which the TPl method is employed about fifty
percent extra model runs need to be carried out, and that
this is generally a small price to pay for the benefits that
it brings in terms of increased numerical stability in situa-
tions of parameter nonuniqueness, and for a dramatic
reduction in the risk of becoming trapped in local objective
function pits.

The decreased probability of ensnarement in local
optima that attends use of the TPl scheme has its roots in
a number of properties of this scheme. One obvious reason
for a heightened probability of success in finding its way out
of small regions of attraction of limited extent in parameter
space is the sheer number of parameter upgrades that are
attempted by this scheme, together with the fact that the
directions pertaining to these upgrade attempts tend to
be maximally different with respect to each other. This
maximality of difference is a result of two factors. The first
is the fact that the upgrade direction tends to be dominated
by insensitive parameters where all parameters are involved
in the computation of this direction; this is a direct result of
the fact that, because of their insensitivity, the GML param-
eter estimation algorithm calculates that these parameters
require larger movement than other parameters to affect
the objective function. As dimensions of parameter space
are progressively closed to the parameter upgrade vector
through the temporary immobilisation of insensitive param-

eters, and new upgrade directions are accordingly com-
puted in spaces of lower dimensions, these new directions
will tend to be orthogonal to the original upgrade vector
which was dominated by the now-omitted dimensions. The
penchant for orthogonality is further increased as a result
of the fact that the entire dimensionality reduction process
is repeated for widely different Marquardt lambda values.
As documented in works such as Bard (1974), computed up-
grade directions can vary between that of steepest descent
down the objective function surface when the Marquardt
lambda is high, to a direction that can be almost orthogonal
to this when the Marquardt lambda is low.

Another important factor behind the success of the TPI
scheme is that it lowers the chances of upgraded parameters
finding local optima in the first place. Unless objective func-
tion improvement during a particular iteration is acceptably
large without the help of the TPl scheme (which often occurs
in the early stages of the parameter estimation process), use
of the TPl scheme requires that model runs be carried out
specifically to test the ability of different upgrade vectors
(often with very different directions as discussed above) to
lower the objective function. The upgrade vector that re-
sults in the largest objective function decline is that which
is selected as the basis for the next linearization of the in-
verse problem. Of all the upgrade vectors tested, this is
the one least likely to lead to a local objective function min-
imum, for the encroachment of global or local optimality
(for which derivatives of the objective function with respect
to all model parameters is zero) is normally marked by smal-
ler and smaller declines in the objective function per itera-
tion as the GML method ensures that a parameter set is
found from which all directions lead uphill. In fact, the more
nonlinear is the problem, the less likely it is that a parameter
upgrade vector resulting in a large objective function de-
cline will lead directly to the bottom of an objective func-
tion minimum (due to the fact that the equations upon
which this upgrade vector are calculated are based on an
assumption whose inapplicability grows with increasing
parameter movement, and/or increasing changes in model
outputs on account of this movement).

An additional factor that contributes to the success of
the TPI scheme in both avoidance of local minima of small
lateral extent, and in extricating itself from such minima,
is PEST’s use of finite differences for parameter derivatives
calculation. As was mentioned above, parameter incre-
ments of one percent are often employed for forward dif-
ference derivatives calculation and two percent for
central difference derivatives calculation (these being set-
tings that work well in many calibration contexts in which
PEST is used with HSPF and other models). These increments
are large enough for PEST to ‘see’’ outside of a small pit in
which it may be currently trapped. Alternatively, if current
parameter values lie just outside of a small pit, these incre-
ments are large enough for the effect of the pit to exert a
smaller influence on calculated derivatives than would be
the case if derivatives were exact. Thus, the use of finite-
difference-based parameter derivatives provides a kind of
filtering mechanism through which finer details of the
objective function surface are prevented from concealing
the broader features of that surface.

So, through a combination of the fact that many upgrade
vectors are tested, that a parameter upgrade selection



128

B.E. Skahill, J. Doherty

procedure is adopted that minimizes the chances of being
trapped in a local minimum in the first place, and maximizes
the chances of escaping from that minimum if ensnarement
does indeed occur, and because parameter upgrades pos-
sess some immunity to the effects of pits because their cal-
culation is based on finite-difference derivatives rather than
point derivatives, use of the TPl method in calibration of
surface water models has consistently resulted in good PEST
performance in estimating parameters for those models.

(Note that selection of a TPI activation threshold of 10%
improvement in the objective function is somewhat arbi-
trary. However experience has demonstrated that this nor-
mally results in efficient implementation of the method. If
the threshold is set too high, TPI-based parameter upgrade
re-computation will be undertaken on most GML optimisa-
tion iterations, irrespective of proximity, or otherwise, to
an objective function minimum. This can result in wasted
model runs if rapid objective function improvement is tak-
ing place without the need for TPl upgrade repetitions. On
the other hand, if the improvement threshold is set too
low, then needless ‘‘struggling’’ of the GML method in the
face of difficulties incurred through problem ill-posedness
or proximity to a local minimum, resulting in only small
improvements in the objective function in successive itera-
tions, can be avoided.)

An example
Description

Use of the methodologies discussed in the preceding section
are now demonstrated by applying them to the calibration
of an HSPF (Bicknell et al., 2001) hydrologic model for the
6.6 square kilometer Wildcat Creek watershed located in
Kitsap County, Washington. The model was developed to
support a total maximum daily load study (ENVVEST Regula-
tory Working Group, 2002). Its run time on a Pentium 4 com-
puter with a 2 Ghz processor was about 4 s.

Estimation of 8 HSPF parameters was undertaken by
matching observed and simulated daily flows over four
non-contiguous time intervals spanning the period 1st Jan
2001 to 2nd Sep 2002, resulting in a total of 456 daily flow
observations for use in the calibration process. (Data ab-
sences over this period were caused by a malfunctioning
gage.) The shortcomings of such a short dataset as a basis
for reliable parameter estimation are well known (Yapo
et al., 1996); unfortunately, however, no other data were

available for calibration of this model. This is not of concern
in the present instance as the purpose of this paper is to
demonstrate the capabilities of the methodologies dis-
cussed above in accommodating local minima. The objec-
tive function was defined as the sum of weighted squared
differences between modeled and observed log-trans-
formed flows, with all weights assigned a value of 1.0. Thus
h of Eq. (1) was comprised of the logs of daily flows, while
the model represented by X in these equations calculated
the model-generated counterparts to these logged flows.
Q was the identity matrix.

Table 1 lists the names and functions of the HSPF param-
eters estimated through the calibration process. Also shown
in this table are the bounds applied to these parameters;
guidance in the setting of most of these bounds was ob-
tained from USEPA (2000). Note that, in order to circumvent
hypersensitivity of the AGWRC parameter as it approaches
1.0, it was transformed prior to estimation; the transformed
parameter (named AGWRCTRANS in the present study) can
vary between 5.0 and 999.0 as AGWRC varies between
0.833 and 0.999. See Doherty and Johnston (2003) for de-
tails. HSPF parameters other than those appearing in Table
1 were fixed at reasonable values.

Finding objective function minima

For the present calibration problem, the objective function
has a value of 23.5 at its global minimum. Fig. 1 shows the
fit between modeled and observed daily flows at this
minimum.

In an attempt to locate as many local minima as possible,
PD_MS2 was asked to run PEST 100 times from a succession of
starting values that were maximally distant from all previous
parameter trajectories, as discussed above. These starting
values were selected from 300 random parameter samples
for which objective functions were calculated prior to the
undertaking of any PEST runs. For this initial PD_MS2 run
PEST’s TPI functionality was not activated. Instead, in order
to guarantee numerical stability in the face of a problem
that (as will be demonstrated shortly) is not well-posed,
TSVD was employed as a regularization device; a maximum
to minimum eigenvalue ratio of 107 was set as the truncation
criterion, this resulting in a PEST-selected solution subspace
of dimensionality between five and eight for most iterations
of the parameter estimation process. In order to remove the
possibility of PEST misinterpreting locally slow progress of
the parameter estimation process as convergence of that

HSPF parameters, their functions, and constraints imposed during the calibration process

Bounds imposed during calibration process

Table 1

Parameter name Parameter function

IMP Percent effective impervious area
LZSN Lower zone nominal storage

11—19% Alley and Veenhuis (1983)
2—15in. (5—38 cm)

UZSN Upper zone nominal storage 0.05-2in. (0.1-5 cm)
INFILT Related to infiltration capacity of the soil 0.001—1.0in./h (0.002—2.5 cm/h)
LZETP Lower zone ET parameter — an index of 0.1-0.9
the density of deep-rooted vegetation
INTFW Interflow inflow parameter 1.0-10.0
IRC Interflow recession parameter 0.30—0.85 day "

AGWRC Groundwater recession parameter

0.833—0.999 day ™"
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process to a global or local minimum, PEST convergence cri-
teria were set unusually tight (this incurring a higher cost in
terms of model runs than would be the case in normal PEST
usage). Specifically, PEST did not terminate a calibration
exercise unless it failed to lower the objective function by
more than a relative amount of .0005 over four iterations.

Fig. 2 depicts the outcomes of this exercise. Each of the
eight graphs appearing in this figure pertains to one of the
eight estimated parameters. For each graph the objective
function is plotted on the x axis, while an optimized param-
eter value is plotted on the y axis. For all but AGWRC, the y
axis exactly spans the allowed range of the pertinent
parameter. In each graph, each point represents the out-
come of one PD_MS2-supervised PEST run; corresponding
points from different graphs (representing corresponding
values for different parameters) can be matched vertically
through their common objective function. It is readily
apparent from this figure that many of the outcomes of suc-
cessive optimization runs are grouped into ‘‘parameter
clumps’’ of nearly constant objective function value; these
clumps define regions of attraction in parameter space.
*'Tight’’ clumps indicate a well-defined region of attrac-
tion; vertical spreading of clumps indicates difficulties in
parameter identification through parameter correlation
and/or insensitivity. For those minima situated at the bot-
tom of broad objective function valleys defining different
regions of attraction in parameter space, local minima are
often in close proximity. Other local minima appear to exist
in isolation from these more populous clumps.

The PD_MS2 run was repeated with TPI replacing TSVD as
a device for numerical stabilization of the inverse problem
and, as discussed above, as a device for escaping local pits
in the objective function surface. The results are provided
in Fig. 3. It is apparent that use of TPI significantly reduces
the chances of the parameter estimation process terminat-
ing in an isolated pit in the objective function surface. How-
ever, this benefit comes at a cost. The 100 PEST runs whose
outcomes are depicted in Fig. 3 required about 52000 model

Observed (dark) and modeled (light) daily flows corresponding to global objective function minimum.

runs for completion; those whose outcomes are depicted in
Fig. 2 required half this number. (Note that the number of
model runs in each of these cases is larger than what they
would be in normal modeling practice because of the tight
convergence criteria employed by PEST as discussed above.)

Another PD_MS2 run involving 100 PEST runs (and with
TPl implemented) was undertaken with the INTFW parame-
ter fixed at a value of 3.4. Fig. 4 shows the results.

Impressions gained from an inspection of Figs. 2—4 are as
follows.

1. Where 8 parameters are estimated, the global objective
function minimum of 23.5 occurs in an elongate valley
rather than a bowl. For some parameters (particularly
INTFW, LZSN and UZSN) the parameter value at the glo-
bal minimum cannot be defined. It is thus apparent that
these parameters can be estimated only with a consider-
able degree of uncertainty on the basis of the dataset
available for model calibration.

2. A minimum exists at an objective function value of 24.0,
this being slightly above the global objective function
minimum of 23.5. For some parameters (e.g. LZSN and
AGWRC(), values corresponding to this minimum are not
too different from those corresponding to the global min-
imum; however for other parameters (for example IMP),
values pertaining to this ‘‘perched’’ objective function
valley are significantly different from those correspond-
ing to the global objective function minimum. If, due
to the fact that their values are so close, either of these
two objective functions can be considered to calibrate
the model, then some parameters (and model predic-
tions that depend on them) will have bimodal probability
distributions. To the extent that a prediction depends on
IMP (impervious area), it may be calculated to have a sig-
nificantly different value depending on which parameter
set is selected as the set of ‘‘calibrated parameters’’.

3. Strong regions or attraction appear to exist around
objective function minima of 26, 34 and 40.
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Figure 2 End-points in parameter space of 100 PEST runs undertaken under the control of PD_MS2. Parameters comprising an

optimized set are linked vertically between graphs by objective function. PEST’s TPI functionality was not operative.

4. Removal of the INTFW parameter from the parameter
estimation process allows better estimates to be made
of all other parameters. However, the discrete objective
function minima at 23.5 and 24, with very different IMP
values corresponding to each of these minima, still
remain.

Ninety-five percent confidence intervals calculated by
PEST for parameters corresponding to the global objective
function minimum are provided in Table 2. It should be
carefully noted that calculation of these confidence limits
is based on a model linearity assumption that is grossly vio-
lated. Nevertheless, they are powerful indicators of the rel-
ative uncertainty of the different parameters for which
estimation is attempted through the calibration process,
and hence of any elongation of the response surface in the
vicinity of the global objective function minimum. The lim-
ited ability of the calibration process to allow inference of
the UZSN and INTFW parameters based on the current cali-
bration dataset is readily apparent from this table. Further

analysis of PEST outputs (including an inspection of compos-
ite parameter sensitivities and eigencomponents of the
parameter covariance matrix) reveals that insensitivity of
these parameters, rather than correlation with one or a
number of other parameters, is the principal reason for dif-
ficulty of their estimation, though some correlation be-
tween UZSN and INTFW is indicated (correlation
coefficient of 0.54); this, no doubt, is responsible for the
decreased elongation of the UZSN clump in Fig. 4 when com-
pared to that of Fig. 3 when INTFW is removed from the
parameter estimation process.

To gain further understanding of the structure of the
complex response surface associated with the current cali-
bration problem, a ‘‘traverse in parameter space’’ was
undertaken along a path comprised of four linear segments
joining parameter sets situated within the various regions of
attraction depicted in Fig. 3. The parameter sets comprising
the beginnings/ends of these segments are marked as
crosses in this figure; the path commences at the global
objective function minimum and moves to progressively
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End-points in parameter space of 100 PEST runs undertaken under the control of PD_MS2. Parameters comprising an

optimized set are linked vertically between graphs by objective function. PEST’s TPI functionality was operative. Crosses mark the

breakpoints of the objective function traverse depicted in Fig. 5.

higher minima. Thirty model runs were undertaken along
each linear segment in equal increments along the segment.
The profile is depicted in Fig. 5. In this figure, distance along
the traverse (plotted on the horizontal axis) is measured
from its start; the ‘‘distance’’ between two parameter sets
is calculated as the square root of the sum of squared differ-
ences of parameters comprising each set, with each such
difference normalized through division by the allowed
parameter range.

Fig. 6 is another profile in parameter space comprised of
9 segments; however, in this case the objective function
pertains to the 7-parameter inversion problem depicted in
Fig. 4. The points which form the individual segment begin-
ning and end points are shown as crosses in the first of the
graphs comprising this figure. The irregular nature of the
objective function surface in fine detail is obvious from this
figure, as is the fact that, notwithstanding activation of
PEST’s TPI functionality, the trapping of some points in local
optima was not completely avoided.

The nature of the objective function surface is explored
in more detail in Fig. 7. In producing this figure UZSN and
LZSN were varied about the objective function minimum
while all other parameters were held at the values corre-
sponding to this minimum. UZSN was varied between 1.2
and 1.7 in. in increments of 0.005 in., while LZSN was varied
between 5in. and 8in. in increments of 0.025 in. For the
sake of clarity, however, the values of these variables are
normalized with respect to these ranges in Fig. 7a. The *‘stri-
ated’’ nature of the objective function surface (for which
evidence is also available in Fig. 6) is readily apparent in this
figure. The surface is shown contoured in Fig. 7b, its irregu-
lar geometry being also readily apparent from this figure.

A profile was plotted of the shape of the objective func-
tion surface along a transect joining points marked ‘*A’’ and
*B”’ in the last frame of Fig. 3. This profile is not repro-
duced in this paper as it is flat, demonstrating the fact that
this linear feature is in fact a long valley in parameter space
marking the elongate minimum of the objective function.
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Table 2 Parameter values corresponding to global opti-
mum; also shown are linear parameter confidence limits
calculated as a by-product of the GML parameter estimation

process

Parameter Estimated Lower 95% Upper 95%
value confidence limit confidence limit

IMP 0.116 8.21E — 02 0.164

LZSN 6.58 4.32 10.0

UZSN 1.58 0.978 2.54

INFILT 5.33E — 02 3.760E — 02 7.59E — 02
LZETP 0.378 0.318 0.448

INTFW 3.4 1.151E — 02 8687

IRC 0.605 0.530 0.691

AGWRC 0.98 0.977 0.983

Efficiency

In the previous subsection, PD_MS2 was deployed in a
model-run-intensive exercise whose aim was to learn as
much about the structure of the objective function surface
as possible. During this exploration, use of the trajectory
repulsion scheme lowered the chances of finding the same
minimum twice (more on this follows), and therefore raised
the chances of finding as many different local optima as pos-
sible on this surface within the 100 PEST runs allocated to
this task. In normal PD_MS2 usage, however, a modeler will
wish to find the global objective function minimum as
quickly as possible. More than this, a user will wish not only
to have found the global objective function minimum, but
also to be certain that he/she has found the global objective
function minimum. In achieving both of these aims, he/she
will wish to waste as few model runs as possible.
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To test this aspect of PD_MS2’s performance, a series of
PD_MS2 runs was carried out in which pre-inversion random
sampling of parameter space was undertaken using different
seeds for the random number generator upon which selec-
tion of these samples is based. For each such PD_MS2 run,
240 pre-inversion model runs were carried out prior to com-
mencement of the sequence of PEST runs supervised by
PD_MS2. PD_MS2 was instructed to cease execution upon
failure of three successive PEST runs to lower the objective
function by a relative amount of .0025. Stable PEST opera-
tion in the face of potential numerical instability (particu-

larly where 8 parameters were estimated) was ensured
through activation of its TSVD functionality (with maximum
to minimum eigenvalue ratio set at 107) rather than its TPI
functionality. While, as is documented above, this increased
the risk of encountering a local optimum (and thus had the
potential to force PD_MS2 to undertake more PEST runs than
it would otherwise have needed to find the global minimum
of the objective function), it did make each PEST run con-
siderably faster. As will be demonstrated below, this strat-
egy appeared to work well in the present case. Note also
that PEST was instructed to cease each of its parameter
estimation runs if it failed to lower the objective function
by a relative amount of 0.001 over 3 successive iterations.

Thirty such PD_MS2 runs were undertaken for this effi-
ciency test. On no occasion was more than 1241 model runs
required to find the global objective function minimum
(mostly far fewer than this), and on no occasion did PD_MS2
carry out more than 2151 model runs before ceasing execu-
tion. The average number of model runs required to find the
global objective function minimum was 493 while the aver-
age number of model runs required for completion of
PD_MS2 execution was 1332. See Table 3 for a summary of
the results of this numerical experiment.

This efficiency study was repeated with the INTFW
parameter held fixed at 3.4. Furthermore, in each PD_MS2
run, only 120 pre-inversion model runs were carried out. In
this case, the global objective function minimum was always
found within 989 model runs (mostly far fewer than this), and
on no occasion did PD_MS2 carry out more than 1400 model
runs before ceasing execution. The average number of model
runs required to find the objective function minimum was
331 and the average number of model runs required for
completion of PD_MS2 execution was 1023. See Table 4 for
a summary of the results of this numerical experiment.

In order to test the dependence of PD_MS2 performance
on the magnitude of the finite difference derivative incre-
ment, the 8 parameter experiment was repeated with the
increment varied downwards from 1%, to 0.1% and 0.01% of
current parameter values. The results are shown in Table 5.
Use of the same random number seeds for respective PD_MS2
runs in this numerical experiment as those employed in the
previous experiment allowed PD_MS2 runs to be compared
on a run by run basis. In some cases greater precision in
derivatives calculation achieved through use of an increment
of 0.1% allowed faster convergence of the GML algorithm.
However in many cases, faster PEST execution did not lead
to faster PD_MS2 execution as more PEST runs were required
to find the global objective function minimum, and for assur-
ance that the global minimum had indeed been found. Where
an even smaller increment was used, this situation was exac-
erbated. (It should be noted that use of an increment as
small as 0.01% would not be possible at all in conjunction
with a model that exhibited any numerical noise caused,
for example, by the necessity to calculate system states
using an iterative solver; hence use of an increment as low
as 0.01% is not generally recommended.)

Comparison with SCE_UA
For purposes of comparison, the SCE-UA method was em-

ployed to calibrate the same model. We wish to point out
that we are very wary of comparing different software
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Figure 7 (a) Objective function surface computing by varying UZSN and LZSN incrementally about their optimized values and
sampling at small, regular intervals. (b) Objective function contours corresponding to (a).

Table 3 Performance of PD_MS2 in estimating 8 HSPF
parameters

Minimum  Maximum  Average
Runs to find global 208 1214 493
objective function
minimum
Runs required for 626 2151 1332

completion of
PD_MS2 execution

For comparison, SCE_UA required about 4500 model runs for
calibration of the same model.

Table 4 Performance of PD_MS2 in estimating 7 HSPF
parameters

Minimum  Maximum  Average
Runs to find global 198 989 331
objective function
minimum
Runs required for 517 1400 1023

completion of
PD_MS2 execution

For comparison, SCE_UA required about 2600 model runs for
calibration of the same model.
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Table 5 Performance of PD_MS2 in estimating 8 HSPF
parameters for different settings of finite difference deriv-
atives increment

Fractional Minimum Maximum Average
increment
Runs to find 1072 208 1214 493
global 103 200 1624 520
objective 10~* 203 2342 701
function
minimum
Runs required 1072 626 2151 1332
for completion 1073 589 2456 1286
of PD_MS2 10~* 603 3432 1843
execution

packages in this manner, for a package, and the methodol-
ogy which it encapsulates, always performs best when oper-
ated by its designers. This is because program settings,
particularly those pertaining to termination and conver-
gence criteria, can have a huge effect on the performance
of a method; a non-expert in the use of a particular package
may not be aware of the optimal settings to use, especially
in difficult cases. Hence, we do not pretend that the results
presented below provide a comprehensive basis for assess-
ment of the comparative performance of SCE-UA and
PD_MS2/PEST. We hope, however, that they do provide a
basis for at least a *‘ball park’’ comparison of the two meth-
ods for this particular calibration case.

After some experimentation with SCE-UA settings (the
most important being the number of complexes to employ
— see Duan et al. (1992), for further details) it was found
that SCE-UA could be guaranteed to find the global objec-
tive function minimum of the eight-parameter minimization
problem in about 4500 model runs. Our impression was that
the narrowness of the objective function valley in which the
global optimum was situated did not make SCE-UA’s task an
easy one, for it was able to achieve an objective function
value of 24.0 in about 3000 model runs, and required the
further 1500 model runs to penetrate to the depths of the
elongate objective function surface surrounding the global
minimum. Furthermore, unless more than 10 complexes
were employed, SCE-UA failed to find an objective function
below 24.0 at all; therefore, unless a modeler undertook a
number of experimental SCE-UA runs with varying numbers
of complexes, it would be possible for him/her to remain
unaware of the fact that the global objective function was
less than this.

Fig. 8 shows the best parameters estimated by SCE-UA at
the end of each shuffling loop, together with the objective
function to which they pertain, the format of this plot being
the same as that of Figs. 2—4; to allow easy comparison with
these figures, only objective function values below 44.0 are
depicted in Fig. 8. They thus record the late history of the
parameter estimation process as undertaken by SCE-UA.
The structural details of the objective function surface that
are apparent in Figs. 2—4, are not apparent in Fig. 8.

The optimization process was repeated with INTFW held
fixed at its optimal value of 3.4. SCE-UA required about 2600
model runs to achieve global optimization.

Comparison with random starting point selection

A further numerical experiment was undertaken whose pur-
pose was to compare the performance of PD_MS2 with that
of a scheme in which repeated PEST runs are undertaken
from random starting points in parameter space, with no
assistance being provided in selection of these points by
pre-inversion ranking or by avoidance of proximity to previ-
ous trajectories. One hundred such PEST runs were under-
taken under the control of a PEST driver named PD_MS1.
In this experiment, INTFW was fixed at its optimal value,
so that 7 parameters were estimated. It was found that of
the 100 PEST runs undertaken by PD_MS1, 54 of these runs
found the global objective function minimum.

With a failure rate of 46 per 100, the chances of failing
to find the global optimum in two independent PEST runs is
21.2%; for 3 PEST runs it is 9.7%. Outcomes of the 30
PD_MS2 runs discussed above must be interpreted in the
light of these statistics. Examination of the records of
these runs revealed that the global objective function min-
imum was found within 2 PEST runs for all but 3 of the 30
PD_MS2 runs; it was found within 3 PEST runs for all but 2
of them. It does thus appear that use of PD_MS2 results in
increased global optimization efficiency over that of
PD_MS1 in this case.

The numerical experiment was repeated with INTFW
adjustable. In this case, it was established through the use
of PD_MS1 (200 PEST runs were undertaken in this experi-
ment) that the probability of failure in finding the global
objective function minimum on any one PEST run for which
starting parameter values are randomly selected is 56%.
Thus failure probabilities for 2, 3 and 4 successive PEST runs
from random starting points are 31.4%, 17.6% and 9.8%
respectively. Examination of the records of the 30 eight-
parameter PD_MS2 runs discussed above revealed that
PD_MS2 was able to find the global objective function min-
imum within 2 PEST runs in 23 out of these 30 PD_MS2 runs.
Three PEST runs or less were required in 25 cases, while 4
PEST runs or less were required in 28 cases. The latter
two figures approach PD_MS1 probabilities.

Further verification of the trajectory repulsion
scheme

Work documented earlier in this section demonstrated that
use of the TPI scheme considerably heightened, but did not
remove, the propensity for ensnarement of the GML method
in a local objective function minima. The example of the
preceding section demonstrated that, in the present case
at least, the propensity for PD_MS2 to find the global objec-
tive function within one to three PEST runs (as an outcome
of pre-calibration sampling and trajectory repulsion) miti-
gated the need for this scheme to some extent (in the pres-
ent case at least), and that use of TSVD as a device for
numerical stabilization (with its consequential doubling of
model run efficiency) resulted in good PD_MS2 perfor-
mance. It should be noted that this may not always be the
case, as objective function surfaces far more pitted than
that illustrated in Fig. 7 may be encountered in the course
of calibrating surface water models. In such cases, use of
the TPl scheme may be fundamental to good PEST
performance.
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Figure 8 Best parameters and objective functions obtained by SCE-UA at the end of each shuffling loop of the 8-parameter

calibration problem. (Note that only objective functions below 44.0 are represented in this figure; the objective function at the
commencement of the parameter estimation process was over 200.)

A numerical experiment was undertaken in which the TPI
algorithm was again disabled so that the efficacy of the tra-
jectory repulsion scheme alone could be tested. One hun-
dred PEST runs were undertaken, using TSVD (with the
same truncation criteria as for other TSVD implementations
documented herein) as a stabilization device, from ran-
domly-selected starting points in parameter space (using
the PD_MS1 driver). The full set of 8 HSPF parameters were
estimated in each case. A histogram of objective function
values achieved from these runs is depicted in the lower
part of Fig. 9.

The upper part of Fig. 9 shows objective function values
resulting from 100 PEST runs undertaken under the control
of PD_MS2; these are the same results as those depicted
in Fig. 2. A comparison of these two histograms reveals
the following.

1. For both methods, the number of times that PEST found
the global objective function minimum was about the
same. It must not be construed from this, however, that

PD_MS1 is as efficient in finding the global minimum of
the objective function as PD_MS2 is, for it must be
remembered that, after having found the minimum
objective function once, it is PD_MS2’s task to find other
objective function minima from that point onwards. Effi-
ciency rests on finding the global minimum as quickly as
possible. Testing this efficiency requires that multiple
PD_MS2 runs with different random number seeds and
appropriate termination criteria be carried out as descri-
bed in the preceding section.

2. A number of PEST runs undertaken under the control of
PD_MS1 resulted in relatively high objective function
minima being found. This was not the case for PEST runs
conducted under the supervision of PD_MS2. This is prob-
ably an outcome of PD_MS2’s rejection of parameter sets
with high objective function values as starting parameter
candidates for a PEST run.

3. Within the range of medium to low objective functions,
excluding the optimum objective function, PEST runs
undertaken under the control of PD_MS2 appear to have
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Figure 9 Objective function occurrences for 100 PEST runs based on random starting locations (lower figure), and starting

locations selected during a single, long, PD_MS2 run (upper figure).

encountered a broad range of objective functions. On
the other hand, PD_MS1-calculated objective functions
appear to be concentrated in fewer values. The greater
spread of minimized objective functions for PD_MS2 is
probably an outcome of PD_MS2’s use of the trajectory
repulsion algorithm in selecting parameter starting
points that are maximally distant from all points on pre-
vious parameter trajectories.

Discussion and conclusions

The results of the above numerical experiments demon-
strate that a GML-based method can perform well in finding
the global minimum of a complex objective function surface
with a run-efficiency that is at least as good as that of the
SCE-UA method if that scheme is enhanced to perform bet-
ter in such inversion contexts. For the PD_MS2 package dis-
cussed herein, these enhancements consisted of:

1. the inclusion, within the PEST inversion engine, of a trun-
cated singular value decomposition algorithm to prevent
deterioration in numerical performance where one or
more parameters became inestimable;

2. the inclusion within PEST of the TPI algorithm which not
only provides a means to circumvent numerical instabil-
ity in situations where the X‘QX matrix of Eq. (3) is diffi-

cult to invert, but also provides the basis for an
intelligent search strategy through which ensnarement
in local objective function pits is avoided;

3. the undertaking of a number of pre-inversion model runs
prior to selecting initial parameter sets that enhance the
chances of a GML-based inversion engine finding its way
into the region of attraction of parameter space domi-
nated by the lowest objective function in that space; and

4. a trajectory repulsion scheme that lowers the chances of
finding the same objective function minimum twice.

As well as providing an efficient means of finding the glo-
bal minimum of the objective function, use of the PD_MS2
package brings with it further advantages. One of these
advantages is that PD_MS2 can be configured to undertake
a long run in which its task is to find as many different
objective function minima as possible. In doing this it effec-
tively probes parameter space for information concerning
the structure of the objective function surface. Where the
number of parameters being estimated is high, and the
dimensionality of parameter space is thus also high, explo-
ration of parameter space, by whatever means, becomes a
numerically intensive process. The ability of PD_MS2 to find
the locations of different objective function minima within
this space provides, at relatively low numerical cost, valu-
able information on those aspects of the objective function
surface that are of most relevance to a particular model
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calibration problem. Of particular importance is the exis-
tence of local objective function minima with similar objec-
tive function values to that of the global minimum, but for
which at least one parameter is significantly different be-
tween these two minima (as occurs in the example docu-
mented above). This phenomenon may have a profound
effect on predictive probability distributions; its existence
could be easily missed using other parameter estimation
methods.

Another advantage that accompanies the use of a GML-
based method is the fact that, as a by-product of its use,
important information on parameter uncertainty, correla-
tion and sensitivity is available at no extra computational
cost from the beginning of the parameter estimation pro-
cess. On the basis of this information, a modeler is able to
determine at an early stage of this process whether the in-
verse problem that he/she is attempting to solve is in fact
capable of unique solution. As the parameter estimation pro-
cess progresses, information on the uncertainties associated
with parameter estimates becomes available. Though local,
and based on a linearity assumption that is violated by most
models, such information can still be valuable in allowing a
modeler to distinguish between those parameters which
are well-estimated through the inversion process and those
which are not. Should the process need to be repeated, such
information provides the basis for making decisions pertain-
ing to which parameters should be fixed, rather than esti-
mated, in subsequent calibration operations.

The GML method has suffered problems in the past when
applied to the calibration of watershed models as a result of
its propensity to become trapped in local objective function
minima and because of its susceptibility to numerical insta-
bility where inverse problems are poorly posed. However, in
other modeling contexts it is widely used because of its high
run-efficiency. Furthermore, as has already been discussed,
numerical instability problems are easily overcome through
the inclusion of various regularization schemes. It is worth
noting that not only can use of such schemes circumvent
the deleterious affects on the inversion process of numeri-
cal instability; they can also provide a mechanism for assim-
ilation of valuable ‘‘outside knowledge’’ into that process,
with the result that parameter estimates, thus informed
by a modeler’s expertise, are more suitable for use in the
making of important predictions by that model than would
otherwise be the case. (See Doherty and Skahill (2006)
for an example of a sophisticated regularization scheme ap-
plied to simultaneous, composite calibration of a number of
watershed models.) For these reasons the GML method, and
variants of it, form the basis of many different data inter-
pretation and image processing methodologies in many dif-
ferent industries where the estimation of hundreds, or even
thousands, of parameters must be undertaken with maxi-
mum efficiency; see, for example, Haber et al. (2000) and
references cited therein. Even where only a few parameters
require estimation, model run efficiency is a consideration
of overriding importance where model run times are large.
Its importance is highlighted by the fact that the parameter
estimation process must often be repeated many times in
the course of finalizing the calibration of a model prior to
using that model for environmental management.

It is hoped that the local optima problem facing use of
the GML method in the surface water modeling context

has been at least partially addressed by the advent of
PD_MS2. Using this software global optimization can be
implemented with a run-efficiency that is easily comparable
with that of purpose-built global optimizers. Furthermore,
through use of this package, the penchant of the GML meth-
od to find local minima can actually be turned to advantage,
for this characteristic of the method can be used as a basis
for exploration of the objective function surface while
incurring a relatively small cost in terms of model runs.
This, in turn, can lead to a better understanding of the
parameter estimation problem as presently posed, and
may possibly lead to re-formulation of that problem so that
it can be more easily, or uniquely, solved.

The purpose of the present paper is not to discredit the
use of global search methods in the calibration of wa-
tershed models. Rather, it is to demonstrate that robust
parameter estimation packages based on the GML method
should not be excluded from consideration for the calibra-
tion of these models, especially when enhanced by tech-
niques such as those encapsulated in PD_MS2 and PEST
that allow this method to perform well in calibration con-
texts where local objective function minima are a common
occurrence. The fact that linear and/or nonlinear predic-
tive uncertainty analysis can be undertaken following a
GML-based calibration run with zero (in the case of linear
analysis) or fairly modest (in the case of nonlinear analysis)
model run requirements further adds to the attractiveness
of GML-based methods; see Vecchia and Cooley (1987),
Doherty and Johnston (2003) and Doherty (2005) for
details.

Software

PEST, PD_MS1, PD_MS2 and supporting software are avail-
able free of charge from the following site:- http://chl.erd-
c.usace.army.mil/pest
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