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Abstract

The idea that models should be as simple as possible is often accepted without question. However, too much
simplification and parsimony may degrade a model’s utility. Models are often constructed to make predictions;
yet, they are commonly parameterized with a focus on calibration, regardless of whether (1) the calibration data
can constrain simulated predictions or (2) the number and type of calibration parameters are commensurate
with the hydraulic property details on which key predictions may depend. Parameterization estimated through the
calibration process is commonly limited by the necessity that the number of calibration parameters be smaller
than the number of observations. This limitation largely stems from historical restrictions in calibration and com-
puting capability; we argue here that better methods and computing capabilities are now available and should
become more widely used. To make this case, two approaches to model calibration are contrasted: (1) a trad-
itional approach based on a small number of homogeneous parameter zones defined by the modeler a priori and
(2) regularized inversion, which includes many more parameters than the traditional approach. We discuss some
advantages of regularized inversion, focusing on the increased insight that can be gained from calibration data.
We present these issues using reasoning that we believe has a common sense appeal to modelers; knowledge of
mathematics is not required to follow our arguments. We present equations in an Appendix, however, to illustrate

the fundamental differences between traditional model calibration and a regularized inversion approach.

Introduction

Albert Einstein observed that our approach to prob-
lem solving should be “as simple as possible but not
simpler.” This philosophy appears to be a firm tenet for
modeling environmental systems. How this philosophy
should be applied in practice is not, however, universally
agreed upon. Problems associated with too little complex-
ity are well known, as evidenced by the popularity of
complex simulation tools beyond simple analytical
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solutions. However, Anderson (1983) observed that mod-
elers often invoke complexity beyond that which is war-
ranted from a conceptual understanding gleaned from
field data, such that often the “emperor has no clothes.”
That is, the model is not as good as it might appear, given
its cost and reams of output. Freyberg (1988) noted that in
a modeling class he taught, predicted system response
was better simulated with more parsimonious but less
well-calibrated models than with models calibrated using
a large number of parameters to obtain a good fit (a phe-
nomenon often referred to as “point calibration). There
appear to be diminishing returns whereby some level of
parameter complexity improves our simulation capa-
bilities, but too much leads to instability, nonuniqueness,
long run times, and an increased potential for predictive
error.

What is the optimal level of parameterization? The
emphasis within the environmental modeling community
is often “the simpler the better.” For example, Hill (1998,
2006) lists parameter parsimony—essentially, the use of
a small number of parameters—as the number one guide-
line for effective model calibration. An American
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Geophysical Union special session on model complexity
concluded that “if models are kept in the context of their
objective, we should feel comfortable resisting the siren
of complexity and construct simpler, less encompassing
models” (Hunt and Zheng 1999). This logic seems unas-
sailable and can produce models that provide some level
of insight. However, questions linger about the focus on
a priori parsimony, such as the following: Did this
approach get the most information from the calibration
data? Does the model adequately reflect the response of
the physical system, or have bias and/or uncertainty been
introduced into model predictions as a result of “hand-
cuffing” to a simplified parameter structure?

Clearly, it is critical to consider the modeling objec-
tive(s) when answering these questions. Predictions
requiring “ballpark” estimates based on bulk system
properties may be made using simple methods—even
hand calculations (for example, Haitjema 1995, 2006). For
other predictions such as contaminant transport, how-
ever, complex simulation capabilities and/or detailed para-
meterization may be required. There has been some
previous work on the utility of model calibration under
such circumstances, with some researchers arguing that the
notion of the calibrated model has no place in environ-
mental simulation since uniqueness is always achieved at
the cost of error-inducing simplification(s). For example,
Woodbury and Ulrich (2000), Gémez-Hernandez et al.
(2003), Goémez-Hernandez (2006), and others argue that
a large number of model runs should be used within
a probabilistic Bayesian framework to explore the range
of predictive possibilities rather than making a discrete
prediction. Although these arguments have merit, for
better or for worse calibrated models commonly form the
basis of environmental decision making and it is within
this context that our discussion takes place.

There appears to be a middle ground between model
calibration using relatively few zones and very complex
parameterization using stochastic or other methods. To
illustrate this middle ground, we contrast a traditional
approach to calibration based on zones of piecewise con-
stancy with an approach based on regularized inversion.
The discussion focuses on model calibration, but also
touches upon the use of calibrated models to evaluate pre-
dictive error and assess the potential relative worth of future
data collection. The discussion is presented in terms of
words and concepts. For the reader interested in the under-
lying mathematics, an Appendix is included that contains
mathematical formulations and references that explore
these concepts in greater detail.

The Traditional Approach

In order to estimate the values of parameters used in
a model, comparisons are made between real-world data
(measurements of ground water elevations, baseflows,
etc.) and simulated equivalents. This can be accom-
plished using manual trial-and-error or inverse codes that
“automate” the trial-and-error process (Anderson and
Woessner 1992). Although the value of intuition devel-
oped by manually manipulating model parameters should
not be understated, Poeter and Hill (1997) among others

suggest that automated methods are often superior. Our
discussion focuses on automated calibration methods that
seek a best fit by minimizing the weighted squared dif-
ferences between measured data and their simulated
equivalents.

For the purpose of this discussion, it is sufficient to
understand that traditional automated approaches require
that the calibration problem be “well posed” in order to
obtain a unique set of parameters that provide the “best
fit” between model outputs and observed equivalents (e.g.,
Draper and Smith 1998). This usually means that the num-
ber of estimated parameters is fewer than the number of
observations plus the number of items of independent
information about parameters (often referred to as “prior
information”—see, for example, Cooley 1982). This
requirement is dictated at least in part by (1) historical
restrictions in computing capability; (2) the fact that
observation data often contain redundant information for
calibration purposes; and (3) the traditional use of direct
matrix inversion to solve the linear system of equations that
is required for estimation of parameters (see Appendix).
The traditional restriction of small numbers of parameters
often results in many important but subjective decisions
during the model construction process.

In truth, the system to be modeled likely contains far
more spatial variability in hydraulic properties than can
possibly be estimated through the calibration process. To
achieve stable and unique calibration using traditional
methods, a priori, user-defined parameter “parsimony” is
used to subdivide the model domain into a small number
of zones with uniform parameter values inferred from
geological knowledge about the system. In some cases,
such zones simply represent areas where few or no data
exist. If this a priori “lumping” leads to more parameters
than observations and/or excessive parameter insensitivity
and/or correlation, the modeler combines zones to reduce
the number of estimated parameters and/or fixes some pa-
rameters at “reasonable” values. Calibration often ceases
once an acceptable fit is achieved. In the case where data
are plentiful, it may become apparent that the level of
parsimony is too great (for example, if it is obvious that
better fits between measured and simulated values can
be obtained). New zones are then introduced in a some-
what ad hoc fashion to reduce the misfit incurred by the
assumption of piecewise property uniformity on too broad
a scale. Unless rigorous methods are employed to simul-
taneously estimate parameter values and structure (e.g.,
Sun and Yeh 1985; Eppstein and Dougherty 1996; Zheng
and Wang 1996; Tsai et al. 2003), the modeler faces ago-
nizing choices over which parameters to lump, which to
fix, what values to assign to fixed parameters, when the fit
is good enough, and when the fit is too good—often using
arbitrary criteria that are hard to convey, document, or
defend. All of these decisions are made while recognizing
that every decision on what to fix or lump may introduce
“hardwired error” into model predictions.

Problems with this approach extend beyond the diffi-
culty of identifying the optimal level of parameter simpli-
fication. First, rigid a priori parameter parsimony based
on an existing understanding of property variability can
make it difficult to improve that understanding through

RJ. Huntetal. GROUND WATER 45, no. 3: 254-262 255



calibration, since the calibration data may be speaking to
“ears” that are not listening. Second, a fundamental moti-
vation for developing models—to test hypotheses that
would be impossible to test in the real world—may be
undermined if parsimony limits the capability of the model
to analyze variations and alternatives. Third, property vari-
ability beyond that which can be uniquely inferred is
ignored: Moore and Doherty (2005) show that this may
undermine efforts to analyze model predictive uncertainty.

Many modelers believe that a well-calibrated model
will naturally provide accurate predictions. However,
Moore and Doherty (2006) demonstrate that transport
predictions made by a model that calibrates perfectly to
ground water elevation data can be 100% wrong as a
consequence of the simplifications required to achieve
a unique calibration. Thus, it is important that model pre-
dictions be accompanied by an estimate of their likely
error. One way to evaluate the potential magnitude of
predictive error is through implementing a constrained pre-
dictive maximization/minimization process through which
a prediction of interest is “stretched” while ensuring that
a suitably good fit between model outputs and field meas-
urements is maintained (Vecchia and Cooley 1987).
Unfortunately, when these calculations are based on the
traditional use of a small number of parameters, they can
be susceptible to errors incurred because simplifications
required to obtain a unique calibration create a form of
“structural noise” that commonly exceeds measurement
noise. This structural noise can be evaluated using methods
such as those developed by Cooley (2004) and Cooley
and Christensen (2006), and this can, in turn, facilitate
proper estimation of potential predictive error. These
methods can be difficult to implement in complex model-
ing contexts, however, and do not directly address the
problem of minimization of that error or help identify
conditions that could lead to extreme values of a pre-
diction—despite the fact this might be of primary interest
to decision makers.

The ability of models to evaluate the utility of future
data collection exemplifies the underlying issue. If struc-
tural noise is not accounted for, predictive error calcula-
tions used to compare the relative worth of different
potential data gathering strategies (e.g., Tonkin et al.
2007) may be misleading. When using traditional meth-
ods, it follows that the fewer data available within a study
area, the greater the need to acquire extra data. Yet, the
fewer the data, the greater the level of parsimony required
to ensure that the number of observations exceeds the
number of parameters. Moreover, as detailed previously,
the fewer the number of parameters, the greater the con-
tribution to predictive error from structural noise. One
could argue that, as a consequence, when the need for
more data is most urgent, the use of precalibration parsi-
mony is most questionable.

Potential weaknesses of precalibration parsimony may
be most evident when extended from situations where
very few data are available to the extreme case where
none is available at all. In this case, should a model
have no parameters? This contravenes common practice,
where on occasions that predictions must be made with
no calibration support, highly parameterized models are
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often used to account for parameter variability—often
together with Monte Carlo and related techniques for
exploration of predictive variability (e.g., U.S. EPA
2001). Why is it that when a limited number of data
become available, methods that recognize the complexity
inherent to real-world systems are disregarded in favor of
methods based upon ad hoc simplification and parameter
parsimony?

An Alternative to the Traditional Approach:
Regularized Inversion

Let us be clear that there is no obvious formulation
of model calibration that previous generations of model-
ers have overlooked. Model calibration is fundamentally
nonunique because there is always more spatial property
variability—and hence more parameters—than observa-
tion data can constrain. The fundamental tension remains:
parameterization of true hydraulic property detail is
impossible; yet, “calibration” implies that a unique para-
meter field is obtained one way or another. Therefore, the
question is not whether a model—which is always a
simplification of reality—should simplify parameter vari-
ability. Rather, it is how this simplification should be
performed.

Advances in computing power, equation solution
techniques, and techniques for formulating the inverse
(i.e., parameter estimation) problem have allowed more
sophisticated methodologies to be used in other fields
such as medical imaging and geophysical prospecting
than are typically used in ground water modeling. These
capabilities present an opportunity to use parsimony to
estimate parameters in a more rigorous way than is tradi-
tionally done using ad hoc parsimony described pre-
viously. Of these, “regularized inversion” (Engl et al. 2006)
is described here. “Inversion” simply refers to the use of
measured data (such as heads, fluxes, etc.) to estimate
model parameters. The term “regularization” describes any
process that makes a function more regular or smooth;
it can be broadly interpreted as any method that helps
provide an approximate and meaningful answer to an ill-
posed problem. In this sense, traditional parsimony is an
informal regularization strategy that reduces a variable
world to a small number of model parameters. Hence, the
need for regularization is not in question—rather the
question is how should it be accomplished?

The basic tenet of regularized inversion described
here is that the level of parameterization used in a model
should not be unnecessarily restricted by ad hoc pre-
calibration parsimony because that may contravene the
original motivation for building the model. Thus, the
calibration process should be flexible in order to be maxi-
mally responsive to information contained in the calibra-
tion data and in the assignment of parameters on the
basis of that information. In doing so, regularized inver-
sion provides a systematic and quantitative framework
for achieving parameter simplifications, whereby the
rationale for the simplification is formally constructed
and decipherable. Regularized inversion incorporates two
primary differences from the traditional approach de-
scribed previously. These are now outlined.



The Level of Parameterization

The first difference is that more parameters can be
assigned to a model because alternative techniques to
direct matrix inversion are used to solve the system of
equations formed during model calibration—techniques
such as singular value decomposition. In practice, there
are still practical limits to how many parameters are
appropriate. Thus, rather than specifying a parameter
for every model cell, for example, parameterization de-
vices such as “pilot points” (de Marsily et al. 1984;
RamaRao et al. 1995; Doherty 2003) are often used.
In the pilot-point approach, parameter values are esti-
mated at a number of discrete locations distributed
throughout the model domain; cell-by-cell parameteri-
zation then takes place through spatial interpolation
from the pilot points to the model grid or mesh. If neces-
sary, pilot points can be grouped to represent geologic
continuity where it is believed to exist and combined
with the use of zones so that hydraulic property hetero-
geneity is preferentially expressed at zone boundaries.
This approach provides a zonation scheme that it is
not “hardwired” as in traditional approaches, and add-
ing parameters can help the calibration process extract
more information from the calibration data. The result,
however, is many more parameters than is typical in
traditional model calibration, which can lead to (1) para-
meter insensitivity and correlation, which in turn lead to
solution nonuniqueness and (2) long run times. To over-
come these issues, “regularization” is required. Some
commonly used regularized inversion approaches are
described below, which can be used by themselves or in
combination.

Stabilizing the Calibration Process with
Mathematical Regularization

In contrast to the more hardwired and static nature of
the traditional approach, regularized inversion can enable
knowledge of a study site to form a flexible mathematical
regularization strategy that can be employed to attain
parameter uniqueness and stability of the inversion pro-
cess. Understanding of a site can enter into the calibration
process through definition of a preferred system condi-
tion (for example “the hydraulic conductivity should
have a value around 1 m/d” or “the hydraulic conductiv-
ity should be uniform in this area”). This condition is
formally injected into the calibration process using
“Tikhonov regularization” (Tikhonov and Arsenin 1977;
Ory and Pratt 1995). In Tikhonov regularization, pre-
ferred system conditions are maintained if possible. How-
ever, minimized deviation from these conditions is
acceptable if this is required in order to obtain a user-
specified level of fit (Doherty 2003). Tikhonov regulari-
zation has been used in the calibration of a variety of
ground water models (e.g., Skaggs and Kabala 1994; Liu
and Ball 1999; Doherty 2003; van den Doel and Ascher
2006), achieving results that would not have been possi-
ble using traditional precalibration parsimony. The use of
Tikhonov regularization can enable the estimation of
a large number of parameters in a geologically reasonable
manner. However, it does not relieve the computational

burden of estimating many parameters, nor is it uncondi-
tionally numerically stable.

A second approach to stabilizing the estimation of
a large number of parameters is to formally decompose
the information on parameter sensitivities and corre-
lations, and eliminate (effectively, fix) inestimable
combinations of parameters that destabilize the inverse
problem, while estimating the remaining parameter
combinations. This approach to regularized inversion
uses the truncated singular value decomposition (TSVD)
matrix analysis technique to identify combinations of
parameters that cannot be estimated using the available
calibration data (insensitive parameters, for example,
are included in this “calibration null space”) and combi-
nations of parameters that can be estimated on the basis
of the available calibration data (these comprising the
“calibration solution space”). The threshold for trunca-
tion is specified by the user. If too many combinations
of parameters are estimated, the problem will still be
numerically unstable; if too few parameters are esti-
mated, the model fit may be unnecessarily poor and
predictive error may be larger than an optimally
parameterized model. While TSVD can provide stable
and unique model calibration, it too does not alleviate
the high computational burden incurred by the use of
many parameters. Nor are parameter fields sometimes
as “aesthetically pleasing” or geologically reasonable as
they are for Tikhonov calibration where reasonableness
is built into the regularization process through use of
a preferred condition.

Tikhonov regularization can be combined with
TSVD to simultaneously achieve the benefits of both.
However, neither TSVD nor Tikhonov regularization, nor
their use in combination, reduces the computational cost
incurred by a highly parameterized model because sensi-
tivities of model outputs must be calculated with respect
to all parameters during each iteration of the calibration
process regardless of whether they are sensitive or not.
On some occasions, the use of adjoint sensitivity tech-
niques (Townley and Wilson 1985; Clemo et al. 2003) can
expedite the computation of these parameter sensitivities.
However, if adjoint sensitivities are not available, the
computational burden may be reduced through the use
of a novel extension of subspace inversion techniques—
hybrid Tikhonov-TSVD (Tonkin and Doherty 2005).

This regularization approach is a hybrid of Tikhonov
and TSVD regularization that accelerates the process by
solving the inverse problem in a parameter “subspace”
computed using TSVD rather than solving the problem in
true parameter space where the sensitivity of each param-
eter is required independently. Once estimable parameter
combinations (referred to as “super parameters”) are de-
fined, derivatives of model outputs with respect to these
parameter combinations are calculated through direct
finite differencing of these combinations. Collectively,
these combinations span the calibration solution space. In
distinction from the traditional use of TSVD where this
subdivision occurs in each iteration of the inverse pro-
cess, the initial subdivision is retained throughout the
inverse process. As the dimensionality of this space is
normally smaller than that of the calibration null space
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(comprising parameter combinations that remain unesti-
mated and thus retain their original values), the number
of model runs required per iteration for computation of
derivatives can be reduced enormously. Unconditional
numerical stability is also obtained, as insensitive and
highly correlated parameter combinations are automati-
cally excluded from the parameter solution space through
the TSVD process through which super parameters are
defined.

The appendix illustrates the form of the basic
parameter estimation equations when Tikhonov (Equa-
tion A-6), TSVD (Equation A-8), and hybrid Tikhonov-
TSVD (Equation A-9) regularization are employed. In
many cases, solving the problem in a subspace of the
important parameter combinations reduces the number
of model runs required (often by more than an order of
magnitude), removes the effects of insensitive param-
eters, and can obtain solutions to the inverse problem
that are sufficiently close to the “true” solution to be
useful.

In addition to extracting the more information from
a calibration data set, regularized inversion as a calibra-
tion methodology allows quantification of potential
prediction error using both linear (Moore and Doherty
2005) and nonlinear (Tonkin et al. in review) methods.
The nonlinear approach employs an extension of the
prediction minimization/maximization technique of
Vecchia and Cooley (1987), in which constraints applied
to parameters during the predictive analysis process
ensure that model-to-measurement fits remain within ex-
pectations and that parameters remain geostatistically
reasonable as predictions are maximized or minimized.
Such analyses can be easily undertaken following model
calibration using any of the regularized inversion meth-
ods discussed previously. Because many parameters are
included in the predictive analysis process, errors that
result from failure of the calibration process to “cap-
ture” system heterogeneity due to limitations in the cali-
bration data are explicitly accounted for.

A final note regarding regularized inversion is that
Moore and Doherty (2005, 2006) demonstrate that re-
gardless of the method employed, the calibrated hydrau-
lic property field is smoother or simpler than the true
hydraulic property field. This is simply the cost of obtain-
ing a unique solution to the inverse problem of model
calibration. Nevertheless, this blurred image of the subsur-
face (e.g., McLaughlin and Townley 1996) so obtained
often appears more geologically reasonable than an
image comprising traditional zones of piecewise con-
stancy since it lacks abrupt and artificial looking dis-
continuities. Furthermore, this “blurred” image of the
subsurface encapsulates as much information as possible
from the calibration data and is thus as representative
a picture as can be expected given the observations
available. This image can be improved upon, thereby
making it sharper (and bringing hydraulic property
detail into focus) by the acquisition of extra data. Put
another way, regularized inversion (and model calibra-
tion in general) does not necessarily produce an accurate
representation of real-world complexity. Rather, it re-
flects the complexity that is supported by the data—and
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Figure 1. Active area of transport (white) from Tonkin and
Doherty (2005) showing water level observation locations
(open circles), MTBE observation locations (stars), Interim
Remedial Measure (IRM) well (filled circle), and pilot points
(crosses). A calibrated pathline from the regularized inver-
sion is also shown (black line).

commonly far more than can be inferred using tradi-
tional parsimony.

Comparison of Traditional and Regularized
Inversion Approaches

To the authors’ knowledge, only a small number of
publications directly compare the two methods described
previously. For example, Tonkin and Doherty (2005)
compare a traditional zone—based parameterization with
the hybrid TSVD regularized inversion, in the context of
a ground water flow and transport model. A brief sum-
mary is provided here; the reader is directed to Tonkin
and Doherty (2005) for more detailed discussion.

The problem was evaluated using a traditional
approach using a single zone for each model layer and
a regularized inversion approach that included 1195 base



Figure 2. Regularized inversion calibrated horizontal
hydraulic conductivity (HHK), model layer 1. For compari-
son, the traditional approach used one value of conductivity
for the layer (Tonkin and Doherty 2005).

parameters, including horizontal and vertical hydraulic
conductivity, recharge, porosity, boundary conditions,
and parameters describing the contaminant source term.
Each model was calibrated to ground water levels and

contaminant concentrations collected from about 40
multilevel monitoring locations (Figure 1). Slug tests and
boring logs indicate that there is geological heterogeneity
present; however, the highly transmissive sand aquifer did
not lend itself to a priori delineation of laterally and/or
vertically contiguous parameter zones. Therefore, the re-
sults of the lumped parameter calibration were used as
initial conditions for the regularized inversion.

The hydraulic conductivities estimated using regu-
larized inversion were generally consistent with the
field data and other independent sources of information
(Figure 2), and produced an improved fit to the measured
data (Table 1)—as might be expected. The most signifi-
cant improvement in the objective function was achieved
through improved fit of simulated and measured con-
centrations at monitoring wells. Plots of simulated and
measured concentrations illustrate that the regularized
inversion model reproduced sharp fronts better than the
lumped model. This is most evident in “bubble plots” of
simulated and observed methyl tert-butyl ether (MTBE)
concentrations in monitoring wells (Figure 3). In these
figures, the source area is located at right and the dis-
charge area is located at left. The lumped parameter
model produces a simulated plume that gives the appear-
ance of simple spreading about a centerline; areas of low
or high measured concentrations are not reflected in their
simulated equivalents. The regularized inversion model
(1) more accurately reproduces areas of higher and lower
concentrations throughout the plume and (2) better matches
the true location of the discharge of the plume to the surface
water body.

Review of the parameters estimated through regular-
ized inversion suggests that the improved fit was largely
obtained by the introduction of spatial variability into
hydraulic conductivity and porosity parameters. This is
expected since using a large number of pilot points
together with Tikhonov regularization enables the hybrid
scheme to introduce such variability. Nonetheless, param-
eter values estimated in the inversion are generally within
the range of values estimated from field testing. In partic-
ular, regularized inversion appeared to identify an area of
low hydraulic conductivity that causes the plume to dis-
charge further offshore than in the lumped calibration
(Figure 2). Tonkin and Doherty (2005), and the authors of
the current discussion paper, do not infer that regularized
inversion identified the “true” parameter values and/or

Table 1
Summary of Traditional and Regularized Inversion Calibration (Tonkin and Doherty 2005)
Weighted Residuals  Weighed Residuals
from Lumped from Regularized
Calibration Using Inversion Using Percent Reduction

Observation Group Traditional Methods Hybrid TSVD in Weighted Residual
MTBE! mass removal at interim remedial measure well 5.27 X 100 2.00 X 10° 62
MTBE concentrations in observation wells 9.31 X 106 1.68 X 106 32
Water levels in observation wells 6.19 X 102 3.71 X 102 40
Composite objective function 1.46 X 107 3.68 X 10¢ 74

IMTBE = methyl tert-butyl ether.
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Figure 3. Profile of MTBE concentrations in wells from
source area (right) to discharge area in bay (left), showing
(a) measured MTBE, (b) measured MTBE and simulated
MTBE from traditional zoned calibration, and (c¢) measured
MTBE and simulated MTBE from hybrid TSVD regularized
inversion (Tonkin and Doherty 2005).

their distribution—for reasons discussed by Menke
(1989) among others. Regularized inversion, however, did
lead to greatly improved fits (and hopefully predictions)
and produced parameter distributions that are consistent
with field and other independent data, and that could not
reasonably be refuted without the collection of additional
site-specific information.

Discussion and Conclusions

There is no universally correct way to parameterize
and calibrate a ground water model or indeed any envir-
onmental model. Nevertheless, a case can be made that
regularized inversion provides a more rigorous and less
subjective mechanism for calibrating ground water
models than do traditional zone-based approaches. We
do not suggest that mapped geological, morphological,
and other boundaries should not be respected where they
are believed to exist; indeed, regularized inversion
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accommodates this. However, one must ask why tradi-
tional zone—based parsimony should be employed in con-
texts where parsimony can be flexibly and formally
implemented using regularized inversion. This approach
is employed as a matter of course in other industries such
as geophysical data analysis and medical imaging. Imag-
ine having to draw a zone where an anomaly may reside
in your kidney or brain in order to interpret the wealth of
information that is available in an image of that organ.
Using the same reasoning, one might ask why it is still
the standard approach in ground water modeling?

While many calibration strategies exist, we believe
that regularized inversion is attractive since it is theoreti-
cally rigorous and sufficiently model-run efficient to be
practical. It offers the potential to include parameter spa-
tial variability in a model on a scale commensurate with
model predictions, at the same time can encapsulate the
modeler’s understanding of a system through the use of
preferred condition constraints. Regularized inversion
helps maximize the insights gained from the field data
and facilitates more encompassing evaluations of predic-
tive uncertainty, while providing a mechanism for simu-
lating conditions that may lead to extreme outcomes when
testing the bounds of model predictive confidence—often
the principal motivation for developing the model in the
first place.

Why is regularized inversion not ubiquitous in
ground water modeling? This may be due in part to the
perception that it is difficult to do and computationally
expensive to implement. However, open-source software
that implements these approaches is freely available (for
example, see Doherty 2003; Tonkin and Doherty 2005;
Hunt et al. in review) and incorporated in several graphi-
cal user interfaces, and most current computational re-
sources are more than sufficient to allow its use. Perhaps
modelers have grown comfortable with the traditional
approach; if so, we hope that this discussion will allow
exploration of potentially better alternatives. While there
is, indeed, no single way to calibrate a model, we believe
that regularized inversion may help ensure that our mod-
els are not only “as simple as possible”—as with tradi-
tional parameter parsimony—but also fulfill the tenet
“but not simpler.”
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Appendix

Mathematics of Traditional Calibration and Regularized
Inversion

Model Calibration

Let the vector p represent the true values of a sys-
tem’s properties, and let h denote the n observations on
which calibration is based. Let € represent measurement
noise. If the matrix X denotes the linear sensitivities of
observations of model outputs corresponding to system
state h to changes in system properties p, the relationship
between h and p can be represented as follows:

h=Xp + ¢ (A-1)

Let p represent values inferred for m model parame-
ters through model calibration. If traditional model cali-
bration is employed to limit the number of parameters in
P so that a well-posed inverse problem is formed, p can
be estimated using the Gauss-Marquardt-Levenberg
method as follows:

p = (X'QX)'X'Qh = Gh (A-2)
where G denotes the (linear) relationship between h and
P, and Q is the observation weight matrix. If Q is pro-
portional to the inverse of the measurement error covari-
ance matrix C(e), the covariance matrix of the estimated
parameters is as follows:

A 2 -1

C(p) = 0;(X'QX) (A-3)

where 62, the reference variance that quantifies the level
of measurement uncertainty, is given by:

2

o = ®/(n —m) (A-4)

where @ is the minimized sum of squared weighted re-
siduals. Equations A-1 through A-4 apply where the
model is linear. Nonlinear parameter estimation is ach-
ieved through extension of these concepts to an iterative
solution process whereby a parameter change vector Ap
is determined on the basis of the current vector of re-
siduals (i.e., model-to-measurement misfits) r using:

Ap = (X'QX)'X'Qr = Gr (A-5)

In traditional parameter estimation as represented by
Equations A-2 and A-5, matrix X'QX must be invertible
to obtain a unique solution—i.e., to estimate the para-
meter values comprising p. This requires the number of
observations be greater than or equal to the number of pa-
rameters—often much greater.

Two particular regularized inversion techniques are
discussed in this article, together with a third that com-
bines these into a hybrid regularization strategy. The
first of these, Tikhonov regularization, supplements cali-
bration data with information pertaining to parameters
using regularization equations, the weights for which are
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determined during calibration. This “penalized least
squares” approach sums measurement and regularization
objective functions to form a global objective function.
The expression for G when Tikhonov regularization is
employed is as follows:

G = (X'QX+/2T'ST) 'X'Q (A-6)
where T is the vector of Tikhonov regularization con-
straints on parameters, S is the regularization weight
matrix, and f§? is the regularization weight factor (deter-
mined though the calibration process as that which ach-
ieves a user-specified level of model-to-measurement fit).

The second regularization strategy is based upon
TSVD (Anderson et al. 1999). In the special case of the
square symmetric matrix X'‘QX, TSVD decomposes
X'QX into:

X'QX = VEV' (A-7)
where E is diagonal and lists the m singular values of
X'QX, while the m column vectors of V are the eigen-
vectors of X'QX (Lawson and Hanson 1995). X‘QX pos-
sesses m real-valued eigenvalues. In practice, a small
number of these dominate, corresponding to calibration
solution space eigenvectors (Aster et al. 2005). Stable
inversion is achieved using regularization as a filter that es-
timates parameter combinations that reside in the calibra-
tion solution space, while ignoring parameter combinations
that reside in the calibration null space. The expression for
G when TSVD regularization is employed is as follows:

G = V,E;'V!X'Q (A-8)
where V| and E; contain the eigenvectors and eigen-
values that are retained following the application of the
regularization filter.

The hybrid regularization methodology of Tonkin
and Doherty (2005) combines Tikhonov and TSVD regu-
larization strategies to estimate a limited number of
“super parameters,” while enforcing Tikhonov constraints
on base parameter values as actually employed by the
model. Super parameters are scalar multipliers for the
solution space eigenvectors (column vectors of V); these
are estimated using classical least squares in a refor-
mulated inverse problem. Jacobson (1985) describes a
similar approach to redefining the inverse problem on
the basis of an eigenvalue-eigenvector decomposition
referred to as “surrogate parameters.” The expression for
G for the hybrid Tikhonov-TSVD regularization process
is as follows:

G = V|(Z'QZ+f*T'ST) 'Z'Q (A-9)
where Z is the sensitivity matrix of model outputs with
respect to “super parameters”, and T is the matrix of
regularization constraints on base parameters after pro-
jection of these constraints onto the calibration solution
subspace.



