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KEYWORDS Summary A calibration methodology based on an efficient and stable mathematical regular-
Regularization; ization scheme is described. This scheme is a variant of so-called ‘‘Tikhonov regularization’’
Calibration; in which the parameter estimation process is formulated as a constrained minimization prob-
Watershed modeling lem. Use of the methodology eliminates the need for a modeler to formulate a parsimonious

inverse problem in which a handful of parameters are designated for estimation prior to initi-
ating the calibration process. Instead, the level of parameter parsimony required to achieve a
stable solution to the inverse problem is determined by the inversion algorithm itself. Where
parameters, or combinations of parameters, cannot be uniquely estimated, they are provided
with values, or assigned relationships with other parameters, that are decreed to be realistic by
the modeler. Conversely, where the information content of a calibration dataset is sufficient to
allow estimates to be made of the values of many parameters, the making of such estimates is
not precluded by ‘‘preemptive parsimonizing’’ ahead of the calibration process.

While Tikhonov schemes are very attractive and hence widely used, problems with numerical
stability can sometimes arise because the strength with which regularization constraints are
applied throughout the regularized inversion process cannot be guaranteed to exactly complement
inadequaciesin the information content of a given calibration dataset. A new technique overcomes
this problem by allowing relative regularization weights to be estimated as parameters through the
calibration process itself. The technique is applied to the simultaneous calibration of five subwa-
tershed models, and it is demonstrated that the new scheme results in a more efficient inversion,
and better enforcement of regularization constraints than traditional Tikhonov regularization
methodologies. Moreover, it is argued that a joint calibration exercise of this type resultsinamore
meaningful set of parameters than can be achieved by individual subwatershed model calibration.
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Introduction

‘‘Regularization’’ is a mathematical term that, in its broad-
est sense, refers to any measure that is taken to ensure that
a stable solution is obtained to an otherwise ill-posed in-
verse problem. In traditional calibration practice, this is
achieved through adherence to the so-called *‘principle of
parsimony’’ in which parameters requiring adjustment
through the calibration process are reduced to a number
for which a unique estimate can be obtained for each. If cal-
ibration is computer-assisted, then prior to initiating execu-
tion of the parameter estimation software package, the
modeler selects those parameters that he/she wishes to
estimate (normally on the basis of anticipated higher sensi-
tivity of model outputs to these parameters) and holds other
parameters fixed at ‘‘sensible values’’.

Often this method works well. However, problems asso-
ciated with this approach include the following:

1. It is not always possible to know ahead of the parameter
estimation process how many parameters can be esti-
mated. If too few are selected for estimation it may
not be possible to obtain a good fit between model out-
puts and field measurements. If too many are selected,
the parameter estimation process may suffer from
numerical instability (which may seriously hamper its
performance in maximizing model-to-measurement fit)
and/or result in the estimation of a set of parameter val-
ues that lack credibility.

2. If, notwithstanding steps taken to reduce the number of
parameters requiring estimation, large variability of one
or a number of parameters leads to only minor changes in
the goodness of fit between model outputs and field
measurements (as a result of parameter insensitivity, a
high level of measurement noise, or both), unique esti-
mation of those parameters becomes problematical. This
often results in meaningless values being assigned to
them through the parameter estimation process.

3. Individual parameter sensitivities are not the sole deter-
minator of what is estimable and what is not. Situations
are often encountered where model outputs have a low
sensitivity to certain parameters collectively, but can
be very sensitive to the same parameters individually.
This is the phenomenon of ‘‘parameter correlation’’.

4, Traditional approaches to calibration are not well suited
to the solution of complex inverse problems, such as
those involving simultaneous calibration of multiple
models, where the estimation of useful values for other-
wise nonuniquely estimable parameters may be assisted
through the provision of trans-model parameter relation-
ships, from which a departure will only be tolerated if
supported by the calibration dataset. Nor can they be
readily adapted to make best use of ‘‘outside informa-
tion’’ on parameter values forthcoming from such dispa-
rate sources as soils mapping, satellite imaging, or simply
the modeler’s expert judgment.

The last point is particularly important, for exclusion
from the calibration process of important information on
watershed hydraulic properties reduces the ability of that
process to estimate parameters that are ‘‘robust’’ in the

sense of allowing the model to make useable predictions
of watershed behavior under possibly different climatic
and/or land management conditions than those that pre-
vailed during the calibration time period, and of transport-
ing knowledge gained from the calibration process to
neighboring unguaged watersheds. Hence considerable
attention has been devoted to incorporating knowledge of
watershed properties (including a stochastic description of
their spatial variability) into the calibration process (see,
for example, Koren and Kuchment, 1971; Koren, 1993;
Schaake et al., 1996), and of developing regional relation-
ships between model parameters and measurable watershed
characteristics (see, for example, Magette et al., 1976;
Campbell and Bates, 2001; Yokoo et al., 2001).

All of the problems outlined above can be overcome
through the use of parameter estimation algorithms that al-
low mathematical regularization to be implemented as part
of the parameter estimation process itself. The result is a
stable solution to the inverse problem (regardless of how
ill-posed it is), and avoidance of the deleterious effects of
numerical instability on both the parameter estimation pro-
cess itself, and on the outcomes of that process, namely the
set of estimated parameter values. A well-designed regular-
ization algorithm, like its manual counterpart, achieves
numerical stability by re-formulating the inverse problem
in a way that recognizes the level of parsimony that is nec-
essary to attain a stable solution to that problem. However,
this ‘‘parsimonizing’’ is undertaken in the context of a spe-
cific calibration dataset, allowing numerical stability to be
achieved without compromising model-to-measurement fit
any more than is deemed necessary by the modeler.

(In using the term ‘‘numerical stability’’, we refer to the
fact that the performance of some optimization methods,
particularly the Gauss—Marquardt—Levenberg method de-
scribed below, can deteriorate badly in the face of ill-
posedness of the inverse problem. As will be discussed be-
low, these methods are very efficient; however because
their efficiency relies on matrix inversion as an integral part
of the determination of a suitable parameter upgrade path,
their ability to improve parameter estimates is seriously de-
graded if that matrix is singular as a result of parameter
nonuniqueness. This expresses itself in an inability to im-
prove model-to-measurement fit beyond a certain level that
is easily recognized as far from optimal, accompanied often
by oscillating estimates of parameter values through the
iterative process through which these are calculated for
nonlinear models.)

Doherty and Johnston (2003) demonstrated the use of
regularized inversion in watershed model calibration. They
employed a ‘‘Tikhonov’’ or ‘‘constrained minimization’’
scheme in which values assigned to estimated parameters
were permitted to deviate from those defining a user-sup-
plied ‘‘preferred system parameterization’’ only to the ex-
tent necessary for a desired level of model-to-measurement
fit to be achieved. If the ‘‘preferred system parameteriza-
tion’’ is defined wisely, this approach guarantees that rea-
sonable parameter values are obtained, no matter how
many parameters are estimated through the regularized
inversion process (Tikhonov and Arsenin, 1977; Engl et al.,
1996). This is because, with the calibration dataset thus
supplemented by information pertaining directly to the
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model parameters themselves, its information content is
thereby sufficient to allow estimation of all such
parameters.

This paper introduces an improvement to this scheme
and demonstrates its use in calibrating a Hydrological Simu-
lation Program Fortran (HSPF) (Bicknell et al., 2001) hydro-
logic model. The methodology is available through the PEST
(Doherty, 2005) package which, together with its Surface
Water Utility Suite (Doherty, 2003b), is freely available to
the public; see below. (“‘PEST’’ is an acronym for ‘‘Param-
eter ESTimation’’.)

Before describing this method it should be pointed out
that, whether regularization is undertaken prior to com-
mencing the calibration process through manual parsimoniz-
ing, or as an integral part of this process through
mathematical means, the resulting parameter set cannot
represent the hydraulic property detail of the real world,
but instead represents average hydraulic properties over
all or part of the simulated system. Furthermore, the
amount of averaging required to achieve numerical stability
rises as the information content of the calibration dataset
decreases (see, for example, Backus and Gilbert, 1967;
Menke, 1984). Where model predictions are then made using
these averaged parameters, these predictions have the po-
tential to be in error, especially where they depend on sys-
tem property details that are not represented in the model.
Moore and Doherty (2006) show that the magnitude of this
error can be considerable. Hence post-calibration analysis
of model predictive error variance should become a routine
adjunct to model calibration and deployment; see Moore
and Doherty (2005) for details of a methodology through
which such an analysis can be undertaken.

Theory

Gauss—Marquardt—Levenberg parameter
estimation

Let the action of a model under calibration conditions be
described by the model operator .# that maps m-dimen-
sional parameter space to the space of the n observations
that are available for use in the calibration process. Let
the m-dimensional vector p represent model parameters
and the n-dimensional vector h represent observations. In
many instances of watershed hydrologic model calibration
these observations will represent stream discharges which
have been ‘‘processed’’ in some way in order to achieve
homoscedascity, and statistical independence of measure-
ment ‘‘noise’’. The former is often achieved through a
Box—Cox transformation (Box and Cox, 1964), while the
latter is often attempted through fitting residuals to an
ARMA model, often as part of the parameter estimation
process itself (Box and Jenkins, 1976; Kuczera, 1983).
The observations h can be comprised of a single observa-
tion type, multiple observation types, and/or a single
observation type processed in different ways in order to
ensure that the information content associated with differ-
ent aspects of the calibration dataset exercise sufficient
influence in the estimation of a final set of model param-
eters (Madsen, 2000; Boyle et al., 2000; Doherty and John-
ston, 2003).

Model calibration seeks to minimize some measure of
model-to-measurement misfit encapsulated in a ‘‘measure-
ment objective function’’, herein designated as @,,. In the
present instance this is defined as

B = [4(p) — h'Q(P) - ] (1)

where Q is a ‘weight matrix’’ which, in the context of wa-
tershed model calibration where n is large, is mostly com-
prised of diagonal elements only. Ideally, each diagonal
element of Q is proportional to the inverse of the squared
potential error associated with the corresponding processed
measurement.

Where p is estimable (i.e. where minimization of @, re-
sults in a unique parameter set), it is calculated as

P — Po = (X'QX)'X'Q(h — ho) (2)

where X is the model Jacobian matrix, each row of which is
comprised of the derivatives (i.e. sensitivities) of a particu-
lar model output (for which there is a corresponding field
measurement) with respect to all elements of p. These sen-
sitivities are calculated at current parameter values, repre-
sented by po, for which corresponding model outputs are h.
Where the model is nonlinear, p calculated through Eq. (2)
is not optimal (i.e. it does not minimize &) unless po is
close to optimal. Hence, after Eq. (2) is used to calculate
an improved parameter set, a new set of sensitivities (i.e.
X) is calculated on the basis of the new parameter set,
and the process is repeated until convergence to the objec-
tive function minimum is achieved.

In practice, the X'‘QX matrix of Eq. (2) is supplemented
by addition of a diagonal term — the so-called ‘‘Marquardt
lambda’’. Thus, Eq. (2) becomes

P — Po = (X‘QX + A1) "X‘Q(h — hy) 3)

Normally 4 is adjusted during each iteration of the parame-
ter estimation process such that its current value results in
maximum parameter improvement during that iteration.
When / is high it is easily shown that the direction of param-
eter improvement is the negative of the gradient of @, and
under these conditions Eq. (3) becomes equivalent to the
‘‘steepest descent’” method of parameter estimation.
While this method can result in rapid parameter improve-
ment when parameters are far from optimal, its perfor-
mance is disappointing in the vicinity of the objective
function minimum, especially where that minimum occupies
a long valley in parameter space as a result of excessive
parameter correlation or insensitivity. In these circum-
stances ‘‘hemstitching’’ is likely to occur, where successive
parameter improvements result in oscillations across the
objective function valley, which is never actually pene-
trated (Doherty, 2005). Hence, ideally / should commence
the parameter estimation process with a moderate value,
and then be reduced as the process progresses. However,
if X'QX is ill-conditioned, reducing the value of A will incur
numerical instability as X‘QX + Al of Eq. (3) is inverted.
Hence, the Marquardt lambda has a secondary role, this
being that of a de facto regularization device, with its value
often being raised in order to prevent instability in the cal-
culation of the parameter upgrade vector p — po. However,
while the use of a high Marquardt lambda can prevent a rel-
atively ill-posed parameter estimation problem from foun-
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dering, it achieves this at a cost in efficiency, for parameter
upgrades become smaller at higher values of 1 as an inspec-
tion of Eq. (3) suggests. Furthermore, as stated above, the
ability of the calibration process to penetrate an elongate
valley in parameter space may be severely compromised.

The predisposition of a matrix to stable inversion is often
measured by its ‘‘condition number’’. High condition num-
bers result in amplification of numerical noise during the
inversion process (Conte and de Boor, 1972) while low con-
dition numbers indicate that inversion should be possible
with little numerical difficulty. In general, condition num-
bers for X'QX greater than about 10* are to be avoided when
using software such as PEST, for at this level the numerical
noise incurred through finite difference-based derivatives
calculation for filling of the X matrix is amplified to the ex-
tent that parameter upgrades may lack integrity. While a
raised Marquardt lambda can often rescue such a damaged
process from total failure as described above, efficiency
of the parameter estimation process is likely to be seriously
degraded.

Another problem that can be encountered when parame-
ter estimation is accomplished by iterative calculation of
P — po using (3), is that this process can converge to a
parameter set p that corresponds to a local, rather than
the global, minimum of the objective function. ‘‘Gradient
methods’’, such as the Gauss—Marquardt—Levenberg method
described above, that rely on equations such as (3) have
been criticized for this reason, and so-called ‘‘global
search’’ methods such as SCE-UA (Duan et al., 1992) are of-
ten used instead. While a well-designed and robust global
search method can indeed be guaranteed to minimize the
objective function in spite of the existence of local minima,
such robustness comes at a price, this being the high num-
ber of model runs that is normally required for completion
of the parameter estimation process. To make matters
worse, the number of model runs increases dramatically
as the number of parameters requiring estimation in-
creases. Use of Eq. (3), on the other hand, is very run-effi-
cient. Fortunately, its propensity to find local minima can
be mitigated through the use of schemes such as that encap-
sulated in the PD_MS2 software package described by Doh-
erty (2003b) which combines the efficiency of gradient
methods with the benefits of introducing a small degree of
randomness to the parameter estimation process, together
with an ability to ‘‘learn from past mistakes’’. In addition,
Eq. (3) can be enhanced by the inclusion of a regularization
term (much more powerful than the Marquardt lambda as
will be described shortly) that greatly increases the propen-
sity for robust and efficient behavior when the dimension m
of p is large, and the shape of the objective function surface
in parameter space becomes a valley (or series of valleys)
rather than a bowl (or series of bowls).

It is the opinion of the authors that all inversion methods
have strengths and weaknesses. It is not therefore our inten-
tion to recommend one over the other for universal applica-
tion. It is our desire, however, to demonstrate one of the
strengths of the Gauss—Marquardt—Levenberg approach,
this being its ability to readily incorporate regularization
into the inversion process, and to demonstrate a means
whereby this can be achieved in a more numerically stable
manner when applied to watershed model calibration than
has been done in the past.

Regularized inversion

Conceptually, singularity or near-singularity of X‘QX (as oc-
curs when large numbers of parameters require estimation
and/or when the information content of the calibration
dataset with respect to estimated parameters is poor) can
be remedied through the addition of extra ‘‘observations’’
to the parameter estimation process which pertain directly
to the parameters requiring estimation. For example, it
may be ‘‘observed’’ that each parameter is equal to a cer-
tain, user-supplied value; presumably this value will have
been chosen to be realistic in terms of the system property
which the parameter represents. Alternatively (or as well),
it may be ‘‘observed’’ that certain pairs of parameters are
equal, or have values which observe a certain ratio or
difference.

Let these ‘‘regularization relationships’’ be represented
by the operator 2 acting on the parameter set p, and let
the ‘‘observed’’ values of these relationships be repre-
sented by j. Then the regularization relationships (also re-
ferred to as ‘‘regularization constraints’’ herein) can be
represented by the equation:

7(p) =j (4a)
the linearized form of which is
Ip=j (4b)

where Z is the Jacobian of the 2 operator. Note that, as is
discussed below, it is not essential that (4a) and (4b) be ex-
actly observed, only that they be observed to the maximum
extent possible in calibrating the model.

If the regularization constraints are given sufficient
weight in comparison with the observation weights encapsu-
lated in Q, a well-posed inverse problem will have been for-
mulated. Mathematically, this problem is then iteratively
solved for the parameters p using the equation:

P —Po = (X'QX + F*Z'SZ + i) (X‘Q[h — ho] + BZ'S[j — jo])
(5)

In Eq. (5) jo represents the right side of (4a) when current
parameter values pg are substituted for p in this equation.
S is a ‘‘relative weight matrix’’ assigned to the regulariza-
tion observations j; it has the same role for regularization
observations as Q does for field observations. All of the rel-
ative regularization weights encapsulated in S are multi-
plied by a ‘‘regularization weight factor’’ % in Eq. (5)
prior to calculation of p — pg. S is supplied by the user. In
many instances it will consist simply of a set of weights ap-
plied individually to the regularization observations j, such
that those with greater weight are more rigidly enforced;
in this case S is a diagonal matrix.

Selection of an appropriate value for % is critical. If its
value is too high the parameter estimation process will
ignore the measurement dataset h in favor of fitting the
regularization observations j. If it is too small, the regular-
ization observations will not endow the parameter estima-
tion process with the numerical stability which it needs in
order to obtain estimates for the parameters p. Alterna-
tively, the assignment of a value to % can be viewed as a
mechanism for trading parameter reasonableness against
goodness of fit. On the assumption that parameter value
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reasonableness underpins the definition of regularization
observations j, and that closer adherence to these regular-
ization conditions therefore results in more reasonable val-
ues for model parameters, the use of a high value for f?
should lead to a high degree of parameter reasonableness
in the calibrated model. However, it also results in the
assignment of values to model parameters in isolation from
measurements of the state of the system whose physical
properties they purport to represent. In contrast, if f? is
set too low, insufficient recognition is given to the noise
associated with measurements of system state; consequen-
tial ‘‘overfitting’’ can then introduce errors to parameter
estimates (and to predictions that depend on them) as rea-
sonableness is abandoned in ruthless pursuit of a good fit
between model outputs and field measurements. Fortu-
nately, as will be discussed shortly, a mechanism is avail-
able for selection of a value for $? which, in many
calibration contexts, can be considered optimal for that
context.

Eq. (5) can be shown to constitute a constrained minimi-
zation problem (deGroote-Hedlin and Constable, 1990; Doh-
erty, 2003a) in which a ‘‘regularization objective function’’
@, defined as

&, = [Z(p) —jI'S[Z(p) —]] (6)

is minimized subject to the constraint that &,, of Eq. (1)
rises no higher than a user-specified value, referred to here-
in as the ‘‘target measurement objective function’’. Thus
the user informs the regularized inversion process of the le-
vel of model-to-measurement misfit required; this process
then enforces the regularization constraints defined through
Eqg. (4a) to the maximum extent that it can by minimizing &,
subject to the constraint that @, rises no higher than the
target level. If the target measurement objective function
cannot be achieved, the regularized inversion process sim-
ply minimizes ®,,; however, where minimization of &,
would otherwise be an unstable process due to parameter
nonuniqueness, stability of this process is maintained by
seeking that set of parameters lying within the elongate
@, valley that also minimizes @,. In either case, the regular-
ization weight factor 2 can be viewed as a Lagrange multi-
plier associated with the constrained minimization problem.
In PEST it is re-calculated during every iteration of the reg-
ularized nonlinear parameter estimation process using a
bisection algorithm based on local linearization of the con-
strained minimization problem about current parameter
values. (For the linearized problem f? is calculated to en-
sure that &, coincides exactly with its user-supplied target
value.)

Note the continued inclusion of the Marquardt lambda in
Eq. (5). In PEST its value is adjusted as needed from itera-
tion to iteration as a practical measure to enhance optimi-
zation efficiency and to ensure stability of the parameter
estimation process should X'QX + 2Z‘SZ become ill-condi-
tioned through use of an inappropriately low value for f2.
This can occur where regularization constraints are poorly
formulated, or where too a good a fit is sought between
model outputs and field measurements, requiring that regu-
larization constraints be abandoned in pursuit of this fit. Of-
ten it occurs for a combination of these reasons, where
weights on some regularization constraints must be lowered

for attainment of a good fit between model outputs and
field measurements, but where the relaxation of regulariza-
tion constraints then leads to unestimability of those model
parameters whose estimation is not realized through attain-
ment of this fit.

Formulation of the inverse problem as a constrained
minimization problem through use of Eq. (5) allows many
more parameters to be estimated than would otherwise
be possible, thereby ensuring that maximum information
is extracted from the calibration dataset. If the relation-
ships of Eq. (4) are realistic, the fact that estimated
parameters are such as to ensure minimal deviation from
these relationships heightens the probability that esti-
mated parameters will themselves be realistic. However,
a practical problem that is often encountered when using
the Tikhonov method is that the regularization weight
matrix S must be supplied ahead of the regularized inver-
sion process; furthermore, it is not adjusted through this
process except for global multiplication by f2. Ideally,
individual regularization constraints described by the rows
of Eq. (4) should be more strongly enforced where the
information content of the calibration dataset is insuffi-
cient to require their contravention for the sake of obtain-
ing an appropriate level of model-to-measurement fit.
However because it is almost impossible to know ahead
of the calibration process the extent to which this should
occur for each of the different relationships encapsulated
in Z, it is often very difficult to supply an S matrix that
is an appropriate complement to the current calibration
dataset. This is especially the case where, as in the exam-
ple presented below, the parameters upon which 2 oper-
ates fall into a number of groups of very different type,
and possess very different sensitivities to the observations
comprising the calibration dataset. Thus a value for 2
which may guarantee estimation of a sensible set of values
for one parameter type (because it prevents overfitting on
the one hand, or misfitting on the other hand through too
strong an enforcement of regularization constraints) may
be wholly inappropriate for the members of another
parameter group, often resulting in unrealistic estimates
for values of parameters comprising that group at best,
and poor performance of the optimization package at
worst because the condition number of the (X'QX+
B*Z'SZ + J1) matrix of Eq. (5) then becomes too high for
numerically stable inversion.

Nevertheless, especially where parameters are of the
same or similar type (for example, if they characterize
the spatial distribution of a particular hydraulic property
over a model domain), Tikhonov regularization can be
both effective and efficient as a calibration device. Hence
it has been employed with great success over many years
in many different disciplines, sometimes with ingenious
design of the regularization operator Z for optimization
of the ability of the inversion process to estimate param-
eter sets that are realistic in different modeling contexts.
See, for example, Constable et al. (1987), Portniaguine
and Zhdanov (1999) and Haber et al. (2000) in the geo-
physical context; Emsellem and de Marsily (1971), Skaggs
and Kabala (1994), Bruckner et al. (1998), in the ground-
water modeling context; and van Loon and Troch (2002)
and Doherty and Johnston (2003) in the surface water
modeling context.
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Adaptive regularization

An ‘‘adaptive regularization’” methodology is now pre-
sented which overcomes this problem in many modeling
contexts. The set of regularization constraints described
by Eq. (4) is subdivided into groups; if desired, each con-
straint can be assigned to its own group. The set of model
parameters p is then supplemented by an additional param-
eter set p,, with one new parameter being defined for each
new regularization group. Each such parameter is, in fact,
the inverse of a group-specific regularization weight multi-
plier; this group-specific weight multiplier is applied in addi-
tion to the global weight multiplier ? depicted in Eq. (5),
the latter being adjusted as part of the constrained minimi-
zation process as described above. Regularization con-
straints are then provided for the elements of p, so that
these too can be estimated as part of the regularized inver-
sion process. Each such constraint comprises the ‘‘observa-
tion’’ that the respective element of p, is zero.

The re-formulated regularized inversion problem re-
mains a constrained minimization process, and thus still
seeks to find a parameter set that either minimizes the mea-
surement objective function &,,, or reduces it to a user-
specified target level, while ensuring that the regularization
objective function @, is conditionally minimized. Because
conditional minimization of the regularization objective
function now requires maximization of weights assigned to
individual or groups of regularization constraints, these
weights are applied as strongly as possible, thereby maxi-
mizing the extent to which the corresponding regularization
relationships encapsulated in Eq. (4) are adhered. However,
with the calculation of the overall regularization weight fac-
tor /3% by the constrained minimization process being such as
to allow minimization of the target measurement objective
function, or achievement of a user-specified target for this
function, these regularization constraints are not so
strongly enforced that model-to-measurement fit is com-
promised. Thus, the regularized inversion process itself en-
sures that the strength of enforcement of regularization
constraints on parameter values or relationships comple-
ments the information content of the calibration dataset
in relation to these parameters. As a result, regularization
constraints are automatically applied more strongly where
the attainment of a satisfactory level of model-to-measure-
ment fit does not require otherwise, thus overcoming a dis-
advantage of the Tikhonov method. The outcome is a
numerically stable regularized inversion process that
achieves a desired level of model-to-measurement fit with
impressive run economy, and that yields sensible values
for model parameters.

Like all numerical strategies, this adaptive regularization
methodology is more suitable for use in some contexts than
in others. It is certainly not the only means by which numer-
ical stability of a regularized inversion process can be
achieved, for so-called ‘‘subspace methods’’ (Aster et al.,
2005), and hybrid schemes such as ‘‘SVD-Assist’’ (Tonkin
and Doherty, 2005) are very effective in this regard. How-
ever, use of the present methodology can be beneficial in
those modeling contexts where the means by which numer-
ical stability is achieved is just as important as the achieve-
ment of that stability itself. In general, where the necessity
for parameters to observe key values or relationships to the

maximum extent possible without compromising fit be-
tween model outputs and field measurements is a critical
part of the calibration process, then the adaptive regulari-
zation methodology described herein will serve that calibra-
tion process well; such a case is demonstrated in the
following section. However, the need to introduce extra
parameters into the calibration process in order to guaran-
tee enforcement of desired parameter relationships does
place some restrictions on the method. Where such rela-
tionships fall into a relatively small number of distinct
groups, and/or where the number of parameters requiring
estimation is not such as to introduce vastly different levels
of ‘‘estimability’’ between them (thus requiring the intro-
duction of many new parameters in order to accommodate
the differential strengths with which regularization con-
straints must be applied), the above method has proven
very successful. However, where large numbers of parame-
ters require estimation, and where differences in estimabil-
ity between them are likely to cover a broad range,
recourse to subspace methods becomes a necessity. Unfor-
tunately, in this case, the guarantee of numerical stability
that accompanies use of such methods is attained at the
cost of loss of ability on the part of the modeler to insist
on the observance of specified parameter relationships in
attaining that stability.

An example
Model description

An HSPF hydrologic model that was developed as part of a
total maximum daily load study (ENVVEST Regulatory Work-
ing Group, 2002) for the approximately 42 square kilometer
Chico Creek watershed located in Kitsap County, Washing-
ton, USA was used for the purpose of demonstrating the
benefits of adaptive regularization relative to traditional
calibration methodologies. The HSPF model includes sepa-
rate submodels for the drainage areas upstream of five
streamflow gaging stations (Kitsap Creek, Wildcat Creek,
Chico Creek Tributary at Taylor Road, Dickerson Creek,
and Chico Creek mainstem) located within the watershed.
The location of the Chico Creek Watershed in Kitsap County
is depicted in Fig. 1.

The names and roles of model parameters selected for
adjustment through the calibration process are provided in
Table 1. Also listed are the bounds on these parameters im-
posed during the parameter estimation process, these being
set in accordance with available guidance from, for exam-
ple, USEPA (2000). Five instances of all but the first of the
parameters listed in Table 1 required estimation, one in-
stance for each subwatershed model. In contrast, the first
adjustable model parameter type listed in Table 1, IMP, per-
tains to all five subwatersheds simultaneously. It possessed
four instances however, one for each of four land use types
occurring within the Chico Creek watershed; a preferred
value was assigned to each instance as a regularization con-
straint (see Table 2b). Thus a total of 49 model parameters
required estimation through the calibration process. In or-
der to better accommodate scaling issues resulting from
the use of different units for different parameters, and in
an attempt to decrease the degree of nonlinearity of the
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Kitsap County

Chico Creek Watershed

Legend

CHICO CREEK- MAINSTBJ
CHICO TRIB. @ Taylor Road
DICKERSON CREEK

KITSAP CREEK @ Lake Outlet
WILDCAT CREEK @ Lake Outlet

*x[Oep

Figure 1 Location of the Chico Creek watershed in Kitsap
County, Washington, USA.

parameter estimation problem, the logs of these parame-
ters were estimated instead of their native values; past
experience has demonstrated that greater efficiency and
stability of the parameter estimation process can often be
achieved through this means (Doherty and Johnston, 2003).

Simultaneous estimation of the parameters listed in Ta-
ble 1 for the five different subwatersheds allows an impor-
tant piece of information to be included in the parameter
estimation process. Namely that, due to their geographical
proximity and similarity of land use, soil type, and other
geomorphic and anthropogenic conditions, parameter val-
ues employed in the different subwatershed models are
not expected to be significantly different. To accommodate
this condition, a series of regularization constraints effect-
ing an assumed similarity condition across the subwater-
sheds was included in the regularized parameter
estimation process. That is, respective log differences of
identical parameter types between subwatersheds were as-
cribed an ‘‘observed value’’ of zero. The advantage of sup-
plying such information through regularization constraints
rather than through ‘‘hardwired’’ parameter equality is that

the regularized inversion process has the option of introduc-
ing parameter differences if this is a requirement for
obtaining a good fit between modeled and observed flows
at each of the streamflow gaging stations. However, the
constrained optimization algorithm which underpins the
regularized inversion process guarantees that only the min-
imum amount of inter-parameter variability required to
achieve this level of fit is introduced. Thus, subwatershed
individuality is recognized at the same time as subwater-
shed similarity.

Mean daily discharge data associated with the five
streamflow gaging stations located within the Chico Creek
Watershed was available for the period 1st January 2001
to 31st December 2002, with some data gaps for each sys-
tem. (The inadequacies of a limited-duration dataset as a
basis for model calibration are freely acknowledged; use
of the present dataset is justified by the fact that no other
data were available. It should be noted, however, that
these inadequacies do not detract from the role of the
present paper in demonstrating a methodology for extract-
ing as much information as possible from a dataset such as
this — or from any other dataset.) Values for the 49 adjust-
able model parameters were estimated through simulta-
neous calibration against the mean daily discharge data
at all five streamflow gauging stations, with mean daily
flows transformed according to the equation (Box and
Cox, 1964):

h; = In(g; + 0.01) (7)

where h; is the ‘‘observation’’ employed in the actual
parameter estimation process (this being the ith element
of h of Eq. (1)), and g; is the corresponding measured mean
daily flow. (As stated above, this type of transformation is
one of a continuum of flow transformations often employed
in the calibration of watershed models to promote homo-
scedascity of measurement noise; see, for example, Bates
and Campbell, 2001.)

Results

Table 2a lists parameter values for each subwatershed
model, estimated using the adaptive regularization scheme
described above. Estimated impervious area percentages
are listed in Table 2b, together with the preferred values
for these parameters employed in the regularization con-
straints applied to them. In implementing the regularized
inversion process, a very low target measurement objective
function was set; hence PEST was asked to lower &, of Eq.
(1) as far as possible, thus reducing misfit between mea-
sured and observed flows to a minimum. It is apparent from
Table 2a that optimal fitting of model outputs to daily flows
could only be achieved through the assignment of different
values to parameters of the same type in different sub-
watersheds. However, the adaptive regularization scheme
employed in their estimation attempted to ensure that
these differences were kept to a minimum. Fig. 2 shows
the fit between the logs of modeled and observed flows at
the Wildcat Creek streamflow gaging station; similar fits
were obtained at the other streamflow gaging stations.
The total measurement objective function (pertaining to
all streamflow gages) achieved through this calibration
exercise was 135.1.
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Table 1

Parameters estimated in calibration of Chico Creek subwatershed models

Parameter name

Parameter function

Bounds imposed during calibration process

IMP Percent effective impervious area 11—19% for med. dens. residential
19—32% for high dens. residential
51—98% for comm. and industrial
7—10% for acreage and rural residential
(Alley and Veenhuis, 1983)
AGWETP Fraction of ET taken from 0.0-0.2
groundwater (after accounting for
that taken from other sources)
AGWRC Groundwater recession parameter 0.833—0.999 day ™"
DEEPFR Fraction of groundwater inflow that 0.0-0.2
goes to inactive groundwater
INFILT Related to infiltration capacity of the 0.003—2.5cm/h
soil
INTFW Interflow inflow parameter 1.0-10.0
IRC Interflow recession parameter 0.30—0.85 day ™"
LZETP Lower zone ET parameter — an index 0.1-0.9
of the density of deep-rooted
vegetation
LZSN Lower zone nominal storage 5—38cm
UZSN Upper zone nominal storage 0.12-5cm

PEST required a total of 1117 model runs to estimate val-
ues for the 49 parameters involved in the adaptive regular-
ization inversion process. Each model run required about 20
seconds for completion on a 3 GHz Pentium 4 machine; thus
the time required for completion of the entire adaptive reg-
ularization process was about 6 hours. (This could have been
reduced dramatically through the use of Parallel PEST in
conjunction with one or a number of other networked
computers.)

The combined subwatershed parameter estimation pro-
cess was repeated with equality-based regularization con-
straints replaced by hardwired parameter equality for all
but the IMP parameters; thus 45 adjustable parameters
were replaced by 9. However, the four impervious area

parameters were estimated with the same regularization
constraints as those described above, bringing the number
of estimated parameters to a total of 13. An objective func-
tion of 349.5 was achieved through this process. Estimated
parameter values are listed in Table 3, while measured
and modeled flows for Wildcat Creek are compared in
Fig. 3. It is apparent from the attained objective function,
and from a comparison between Figs. 2 and 3, that flows
in Chico Creek subwatersheds are better simulated when in-
ter-subwatershed parameter variation is allowed. This is
verified by an examination of Nash—Sutcliffe coefficients
computed for the logs of modeled and observed flows at
individual streamflow gaging stations, and collectively at
all gaging stations, based on calibration fits obtained

Table 2a Estimated values for subwatershed model parameters for attainment of best fit at all Chico Creek subwatershed
streamflow gaging stations, this corresponding to a measurement objective function of 135.1

Parameter Kitsap Creek  Wildcat Creek  Chico Creek (Taylor Road) Dickerson Creek  Chico Creek (mainstream)
AGWETP 2.08E-03 1.75E-03 1.55E-03 1.83E-03 1.92E-03

AGWRC 0.985 0.982 0.964 0.984 0.975

DEEPFR 9.00E-03 7.37E-03 1.26E—02 7.53E-03 1.18E—02

INFILT 0.36 0.11 0.091 0.12 0.19

INTFW 1.42 2.53 1.64 2.95 1.56

IRC 0.81 0.63 0.71 0.72 0.73

LZETP 0.28 0.41 0.57 0.12 0.59

LZSN 17.8 19.7 33.1 20.5 18.2

UZSN 3.94 3.45 5.08 4.75 2.82

Adaptive regularization was employed in the parameter estimation process.
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Table 2b Estimated values for fractional impervious area
parameters for attainment of best fit at all Chico Creek

subwatershed streamflow gaging stations

through adaptive regularization on the one hand, and hard-
wired parameter equality on the other hand; see Table 4.
The superiority of the fit obtained where inter-subwater-

shed parameter variability is allowed is readily apparent

Parameter Regularization Estimated from this table.
constraint value
IMP1 (med. dens. 0.15 0.16 Comparative performance with other
residential) regularization methods
IMP2 (high dens. 0.23 0.20
residential) Further PEST runs were undertaken in order to compare the
IMP3 (comm. 0.83 0.63 performance of the adaptive regularization scheme dis-
and industrial) cussed herein with that of other regularization metho-
IMP4 (acreage and 0.084 0.096 dologies.
rural residential) In the first of these runs, simultaneous calibration of
the five Chico Creek subwatersheds was repeated using an
1 4
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Figure 2a
simultaneous adaptive regularization.
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Figure 2b A magnified portion of Fig. 2.
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Table 3 Estimated parameter values for all Chico Creek
subwatersheds where parameter equality constraints are
rigidly enforced

Parameter Estimated value
IMP1 0.18
IMP2 0.23

IMP3 0.90

IMP4 0.10
AGWETP 1.15E-03
AGWRC 0.976
DEEPFR 1.03E-02
INFILT 0.25
INTFW 1.88

IRC 0.71
LZETP 0.38
LZSN 27.9
UZSN 2.52

identical Tikhonov scheme to that described above, but
without the use of adaptive regularization to ensure maxi-
mal enforcement of regularization constraints. A similar
measurement objective function and Nash—Sutcliffe fitting
coefficients were obtained using this calibration methodol-
ogy to those obtained using the adaptive regularization ap-
proach; model calculated flows were virtually identical to
those depicted in Fig. 2. However, the condition number
of the X‘QX + %Z'SZ matrix of Eq. (5) for most iterations
of the parameter estimation process was about 10°, com-
pared to about 10> when using adaptive regularization. Be-
cause of this, PEST found it necessary to employ much
higher (by a factor of between 100 and 1000) values for
the Marquardt lambda than was required for adaptive regu-
larization. The result was slower convergence of the param-
eter estimation process, with over 1500 model runs being
required for its completion.

Table 5 lists parameter values estimated though this pro-
cess. It is readily apparent that inter-subwatershed variabil-
ity between parameters of the same type is much greater
for Table 5a than it is for Table 2a. Furthermore, a number
of parameters listed in Table 5a are at their upper or lower
bounds. This is also true of the IMP parameters depicted in
Table 5b, three out of four of which are at their limits in
defiance of the regularization constraints imposed on these
parameters through which the preferred values listed in Ta-
ble 2 were assigned to them.

The reason for the poorer numerical performance of the
unenhanced Tikhonov scheme becomes obvious upon
inspection of the weights (%S of Eq. (5)) applied to the reg-
ularization relationships comprising the Z matrix of Eq. (4)
in formulation of the regularization objective function.
For simultaneous calibration of the five Chico Creek sub-
watersheds most of the rows of Z consist of equality rela-
tionships between parameters of the same type in
different subwatersheds; five such relationships (one for
each subwatershed pair) exist for all but the IMP parame-
ters. An extra four rows of Z are then employed for the
assignment of IMP preferred values. Because none of the
regularization relationships comprising the rows of Z are as-
sumed to possess any statistical correlation, S was supplied
as a diagonal matrix.

In implementation of an unenhanced Tikhonov scheme
the weights comprising the elements of S are not adjusted
relative to each other; rather they are modified solely
through uniform multiplication by the regularization weight
factor 2, this being calculated to maximize inter-subwater-
shed parameter uniformity subject to the constraint that
the measurement objective function rises no higher than a
certain, user-supplied, level; re-calculation of [fz, based
on a local linearization assumption, is undertaken during
every iteration of the PEST nonlinear parameter estimation
process. At the end of the unenhanced Tikhonov regularized
inversion process through which parameters were simulta-
neously estimated for all Chico Creek subwatershed models,
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Figure 3a
different subwatersheds constrained by hardwired equality.

Observed (bold) and modeled (light) Wildcat Creek daily flows over the calibration period. Like parameters from
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Figure 3b A magnified portion of Fig. 3a.

Table 4 Nash—Sutcliffe coefficients for log of daily flows
based on simultaneous calibration through regularized inver-
sion (column 2) and simultaneous calibration with hardwired
parameter equality (column 3)

Streamflow gaging station  Adaptive Hardwired
regularization = parameter
equality
Kitsap Creek 0.768 0.336
Wildcat Creek 0.918 0.879
Chico Creek (Taylor Road) 0.888 0.675
Dickerson Creek 0.936 0.879
Chico Creek (mainstream)  0.952 0.916
All gaging stations 0.917 0.846

PEST-calculated values for all of the diagonal elements of S
were 2.37E—2. The fact that they were all equal is a direct
consequence of the fact that the originally supplied S matrix
contained equal diagonal elements.

Regularization weights calculated by PEST through the
adaptive regularization process leading to the parameter

Table 5a

Table 5b Estimated values for fractional impervious area
parameters for attainment of best fit at all Chico Creek
subwatershed streamflow gaging stations using a traditional
Tikhonov scheme

Parameter Regularization Estimated value
constraint

IMP1 0.15 0.19

IMP2 0.23 0.32

IMP3 0.83 0.51

IMP4 0.084 0.07

estimates provided in Table 2 were starkly different. In this
case, multipliers for subgroups of the diagonal elements of S
are actually estimated through the parameter estimation
process under the constraint that they be as large as possi-
ble without compromising model-to-measurement misfit.
Computation of weights in this manner not only allows
enforcement of equality constraints to vary between
parameter groups; it also reduces the potential for underes-
timation of weight multipliers, for less reliance is placed on

Estimated values for subwatershed model parameters for attainment of best fit at all Chico Creek subwatershed

streamflow gaging stations, this corresponding to a measurement objective function of 134.3

Parameter  Kitsap Creek  Wildcat Creek  Chico Creek (Taylor Road) Dickerson Creek  Chico Creek (mainstream)
AGWETP 0.101 6.45E—04 3.60E—04 1.75E-03 1.38E—04

AGWRC 0.986 0.981 0.980 0.984 0.959

DEEPFR 2.80E-03 0.16 5.79E-03 9.87E—04 7.81E-03

INFILT 1.27 1.69E—01 2.90E—02 1.06E-01 3.71E-02

INTFW 1.00 3.01 5.73 3.65 5.02

IRC 0.72 0.65 0.85 0.76 0.85

LZETP 0.13 0.34 0.49 0.11 0.11

LZSN 5.0 12.5 32.7 13.8 24.5

UZSN 2.01 4.39 5.00 5.00 5.00

Traditional Tikhonov regularization was employed in the parameter estimation process.
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Table 6 Weights calculated by PEST for regularization
constraints applied during the adaptive regularization
process

Parameter type Regularization weight

AGWETP 1.408
AGWRC 1.093
DEEPFR 0.332
INFILT 1.337
INTFW 0.355
IRC 0.978
LZETP 0.628
LZSN 1.289
UZSN 1.009
IMP 1.762

Note that for all but the IMP parameters regularization con-
straints consisted of inter-subwatershed equality relationships.
For the IMP parameters they were comprised of the assignhment
of preferred values. (By way of comparison, for unenhanced
Tikhonov regularization a uniform weight of 2.37E—-2 was
applied for all parameter types.)

the local linear approximation necessary for computation of
the Tikhonov regularization weight factor 2. PEST-calcu-
lated weights for the 10 groups into which regularization
constraints were subdivided (one for each estimated param-
eter type) are listed in Table 6. It is apparent from this table
that regularization constraints were applied more strongly,
and with greater discrimination between parameter types,
during the adaptive regularization process than during the
unenhanced Tikhonov regularization process.

Parameter estimation was next undertaken using trun-
cated singular value decomposition (TSVD) — a subspace
method — as a device for stabilizing the inverse problem.
Using this methodology a solution to the inverse problem
is sought within an orthogonal parameter subspace of re-
duced dimensionality to that of the original inverse prob-
lem, this reduction being such as to ensure that the
condition number associated with the inverse problem rises
no higher than a user-specified level; this value was set to
103 for the current case, thus ensuring numerical stability.
See Doherty (2005) for further details of this methodology.

The TSVD inversion process resulted in a similar level of
fit, and visually almost identical model-calculated flows, to
those obtained using the other regularized inversion
schemes discussed herein. However, estimated parameter
values showed even greater inter-subwatershed variability
and coincidence with upper and lower parameter bounds
than those depicted in Tables 5a and 5b.

Calibration of an individual subwatershed model

A final calibration run was undertaken in which the Wildcat
Creek subwatershed model was calibrated in isolation from
other subwatershed models, with no regularization applied.
It was found that stable numerical inversion could not be
achieved unless the number of estimated parameters was
reduced to 8. Hence only one IMP parameter was estimated
(the others were tied to it such that they maintained a fixed
ratio to it through the calibration process), and the rela-
tively insensitive AGWETP and INTFW parameters were

Table 7 Estimated parameter values for calibration of the
Wildcat Creek subwatershed model alone

Parameter Estimated value
IMP1 0.19

IMP2 0.23

IMP3 0.83

IMP4 0.11
AGWETP 1.15E-03
AGWRC 0.981
DEEPFR 0.18
INFILT 0.093
INTFW 1.88

IRC 0.67
LZETP 0.36
LZSN 14.4
UZSN 3.26

assigned values equal to those obtained through simulta-
neous hardwired subwatershed model calibration. Parame-
ter values estimated through this process are depicted in
Table 7. Model-to-measurement fit was visually almost iden-
tical to that displayed in Fig. 2. A Nash—Sutcliffe coefficient
of 0.920 was obtained; this is similar to the value of 0.918
obtained for this same subwatershed when calibrated simul-
taneously with the other four subwatersheds using adaptive
regularization. Objective function values were 25.8 for indi-
vidual Wildcat Creek model calibration and 26.2 for adap-
tive regularization of this watershed model simultaneously
with the other four subwatershed models. A slight deterio-
ration in model-to-measurement fit was thus incurred
through the adaptive regularization simultaneous calibra-
tion option. However, because the difference between
these two objective functions is slight (less, in fact, than
the objective function difference termination threshold
for the simultaneous calibration option) no firm conclusions
can be drawn from this exercise regarding relative perfor-
mance of the two methods in minimizing model-to-mea-
surement misfit. What is of interest, however, is that a
comparison of Table 7 with the third column of Table 2a re-
veals that an almost identical level of fit between modeled
and gaged mean daily flows at the Wildcat Creek gaging sta-
tion can be achieved with significantly different sets of
model parameters.

Discussion

The use of regularized inversion in model calibration brings
with it many benefits. Principal among these is that it allows
the parameter estimation process itself to introduce parsi-
mony to model parameterization; normally this is done only
to the extent necessary for the attainment of numerical sta-
bility, or to prevent ‘‘over-fitting’’ as defined by a suitable
value for @,,. Because the inversion process is thereby freed
from the imposition of ‘‘pre-emptive parsimonizing’’ as a
necessary precursor to its deployment, it becomes maximally
responsive to information contained within the calibration
dataset in assigning values to estimated parameters. Model
predictions are thus made with minimized error variance
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(Moore and Doherty, 2005). For this reason, regularized
inversion is employed as a matter of course in many scientific
disciplines, including geophysics, medical image and signal
processing and astrophysics (Haber, 1997). There is no reason
why it should not find routine usage in the calibration of wa-
tershed models as well.

Formulation of the regularized inverse problem using the
Tikhonov approach brings with it some advantages and some
disadvantages. A distinct advantage is the fact that, theo-
retically at least, the modeler is able to exert a consider-
able influence on the direction taken by the parameter
estimation process by specifying that his/her conception
of parameter reasonableness be violated only to the mini-
mum extent necessary to achieve an acceptable level of
model-to-measurement fit. If the result of this process is
then an unreasonable set of parameter values, this signifies
that measurement noise is higher than anticipated, and a
reduced level of model-to-measurement fit should thereby
be requested in a repetition of the regularized parameter
estimation process. Eventually it should be possible to ob-
tain a set of parameter values that is hydrologically reason-
able, while allowing the model to reproduce historical
system behavior to the extent that this can be justified in
the current modeling context.

Another benefit of the Tikhonov approach is that it al-
lows the modeler to introduce ‘‘soft data’’ to the parame-
ter estimation process. The Chico Creek example
discussed above illustrates this process. Such data can lead
not only to more realistic parameter values; it can also lead
to a reduction in the degree of nonuniqueness associated
with estimated parameter values, for it provides the means
whereby certain, possibly large, subspaces of parameter
space that lead to a low objective function, but are not nec-
essarily in accord with a modeler’s intuition, can be elimi-
nated from further consideration.

Unfortunately, however, the advantages of the con-
strained minimization approach to regularized inversion
cannot be realized unless the different regularization con-
straints introduced to the parameter estimation process
are individually enforced to the greatest extent possible
without compromising model-to-measurement fit. This is
difficult to achieve when control over the strength with
which these constraints are applied is in the hands of a sin-
gle variable, this being % of Eq. (5). Maximum efficacy of
the Tikhonov method in achieving desirable parameter val-
ues requires that more controls be provided through which
individual regularization constraints can be applied with dif-
ferent strengths, with these strengths depending on the
freedom of movement granted to the parameters involved
in these constraints by the calibration dataset. For those
parameters, and/or parameter combinations, for which
the calibration dataset is particularly uninformative, the
constrained minimization calibration process must guaran-
tee that user-supplied constraints are well respected. Only
for those parameters that must vary in accordance with
the demands of obtaining a good model-to-measurement
fit, should regularization constraints be relaxed.

The adaptive regularization scheme described herein is
an enhancement to the Tikhonov regularization methodol-
ogy that, in many modeling contexts, including some that
are of interest in watershed model calibration, allows this
methodology to achieve its full potential of stable inversion

with reasonable parameter outcomes. As a consequence,
the watershed modeler has at his/her disposal a means of
undertaking more sophisticated calibration than is available
through traditional methodologies, allowing him/her to cal-
culate parameter sets that better respect historical data on
the one hand, while respecting notions of parameter rea-
sonableness on the other. The latter is an outcome of the
fact that the constrained minimization formulation of the
inverse problem offers the modeler the ability to encapsu-
late his/her knowledge of the parameters that govern wa-
tershed processes as a set of constraints that will be
respected by the inversion process insofar as this is possible,
given the modeler’s choice of desired goodness of fit. Be-
cause the adaptive regularization technique discussed here-
in enhances the ability of the constrained minimization
process to respect those constraints, it thereby enhances
the ability of the modeler to employ such knowledge as an
integral part of the parameter estimation process.

Automated calibration of surface water models has been
criticized for failing to take sufficient account of a mod-
eler’s intuitive knowledge of what constitutes a reasonable
parameter set; see, for example, Lumb et al. (1994). In
works such as this it is alleged that the ability of parameter
estimation software to rapidly achieve a good fit between
model outputs and field measurements seduces hydrologists
into treating their models as ‘‘black boxes’’, thereby
excluding their expert knowledge on parameter reasonable-
ness from the calibration process. This is a criticism that the
authors of this paper regularly face, in spite of the fact that
computer assisted calibration of watershed models has been
undertaken for over 30 years, has been the subject of in-
tense research, and has won broad acceptance within many
sectors of the watershed modeling community (Gupta et al.,
2003). We share the opinion that the parameter estimation
process suffers where modelers adopt an attitude of com-
placency toward parameter reasonableness in deference
to an unstated assumption that ‘‘a good fit is good enough’’.
It is hoped that the use of regularized inversion in general,
and the adaptive enhancements to the Tikhonov scheme
documented herein, will allow modelers to rapidly obtain
both goodness of fit and parameter reasonableness where
the modeling context allows this, or to better explore the
tradeoffs between the two where it does not.

Software

PEST and supporting software are available free of charge
from the following site: http://chl.erdc.usace.army.mil/
pest.
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