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We present a new derivative-free hybrid algorithm for global optimization of
expensive black box functions. The algorithm uses an evolution strategy for
global search. Convergence toward local minima is accelerated by including a
local search individual in each generation. The local search individual is com-
puted by extracting derivative information from a radial basis function approx-
imation to the objective function interpolated from previously evaluated points
in the evolutionary strategy. This hybrid approach does not require artificial
or user-defined switching between global and local search. Numerical results
are presented on mathematical test problems from the optimization literature
and for a small dimensional conceptual watershed model from hydrology.
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1. Introduction

Evolution strategies are known to be reliable but expensive for approximating global
optima particularly for multi-modal fitness functions. A large population size is required
for the strategy to explore the real parameter space, but this slows local convergence.
In contrast, classical gradient-based algorithms are exploitative in nature and converge
quickly to local minima, but they are not good at finding the global minimum.

Many algorithms attempt to accelerate the convergence of the evolutionary strategy, or
other population-based search method, by either switching to a local, usually gradient-
based, search at some user-defined threshold or by applying some local search operator at
every generation so that the global and local searches are interwoven. Examples of the for-
mer strategy include switching from particle swarm optimization to sequential quadratic
programming at a user defined threshold (Min et al. 2007) and similarly switching from
a genetic algorithm to a Levenberg-Marquardt algorithm (Peters et al. 2010). Examples
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of interwoven strategies include incorporation of an extra individual at each generation
of an evolution strategy calculated from an approximated Newton step (Woo et al. 2004,
Tahk et al. 2007, 2009), the use of a discrete gradient operator to improve the best in-
dividual in each generation of an evolution strategy (Abbas et al. 2003), and a hybrid
genetic algorithm that uses a quasi-Newton step to attempt to improve the fitness of
every individual at each iteration (Renders and Flasse 1996).

Another approach taken to lessen the number of expensive objective function evalu-
ations in evolutionary strategies and other population-based algorithms is to use func-
tion approximation models as surrogates for the objective function. Typically, estimated
function values are used to screen offspring and the more expensive objective function is
evaluated only at the most promising offspring (Regis and Shoemaker 2004, Kern et al.
2004). In this paper we propose to use similar function approximation models to approx-
imate derivative information for a local search that will be interwoven with the global
evolutionary strategy. In fact, the same function approximation model can be used to ap-
proximate derivatives for the local search and as a surrogate to screen objective function
values for the global search, though we do not report on that here.

We follow essentially the same framework as the hybrid evolutionary strategy first out-
lined in (Woo et al. 2004) and subsequently improved in (Tahk et al. 2007, 2009). In that
algorithm, a standard evolutionary strategy is used to advance the population at each
generation. Additionally, an individual called the gradient individual is propogated along-
side the evolving population. The gradient individual is calculated by making a Newton
update from the gradient individual of the previous generation or from the fittest point
of the current generation. The gradient is estimated from a least squares finite difference
approximation and the Hessian is iteratively approximated by one-dimensional finite dif-
ference updates using the previously evaluated points in the population. The gradient
individual hybrid approach has been shown to improve convergence of the standard evo-
lutionary strategy on a small number of mathematical test problems. One drawback to
the algorithm is that the individuals in the evolving population are selected symmet-
rically about the estimated minimum of the current generation: xmin ± ∆x. Selecting
the population symmetrically increases the accuracy of the finite difference discretiza-
tions of the derivatives, however the symmetric population seems to interfere (Baggett
and Skahill 2010) with the convergence of the covariance matrix adaptation variation
of the evolutionary strategy (CMAES due to Hansen and Ostermeier 1996). While we
have not determined exactly how the symmetrized population interferes with adaptation
in CMAES, we think it is likely related to the covariance matrix updating and/or the
step length updating within that algorithm. Another drawback to the symmetrized finite
difference hybrid algorithm is that the minimum population size for the evolutionary
strategy is 2n, where n is the dimension of the search space.

Our proposed algorithm, however, differs from the gradient individual hybrid evolution
strategy (Woo et al. 2004, Tahk et al. 2007, 2009) in two important respects: first, in-
stead of using finite differences to approximate local derivative information we fit a local
function approximation model to previously evaluated points and differentiate the model
analytically, and second, the evolution strategy is the covariance matrix adaptation evo-
lution strategy (CMAES) (Hansen and Ostermeier 1996). The use of the surrogate model
to approximate the derivatives allows the estimation of derivatives without making any
modifications to the basic structure of the evolutionary strategy. In fact, this approach
allows for hybridization of virtually any population-based search algorithm. In this arti-
cle we will focus on hybridization of CMAES which is known to be particularly effective
at approximating global optima. CMAES is especially effective at locating global optima
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when used in conjunction with a population doubling strategy as described in Auger and
Hansen (2005). More recently, a two population restart strategy in which one popula-
tion grows exponentially larger while the other is maintained at a small size has shown
promise (Hansen 2009), but is not explored here.

The derivative estimation method will be explained first and it will be shown how the
approximated derivatives are used to perform local search by calculating a “local search
individual” in each generation. Next the hybrid algorithm will be summarized. We have
implemented the hybrid algorithm in CMAES, and it will be shown how the new hybrid
algorithm performs on a small suite of test functions in 10 and 30 dimensions. Finally,
we briefly demonstrate the calibration of a conceptual watershed model using the hybrid
algorithm.

2. Local Search using Radial Basis Functions

The foundation of this optimization algorithm is an evolution strategy in which new
offspring are produced at each generation by recombination and mutation (see Figure
2). The objective function is evaluated at each of these offspring and the fittest offspring
are selected as parents for the next generation. In the hybrid approach, an additional
individual, called the local search individual, is propagated by a different mechanism
each generation. Tahk et al. (2007) refer to this additional individual as the gradient
individual, but we call it the local search individual since in practice it could be the result
of any local search that is a function of the previously evaluated points. The current local
search individual, xtls, is either the fittest offspring of the current generation (individual

with lowest function value) or the local search individual from the previous generation.
From information gathered during the evolution of the population the first and second
derivatives of the objective function are estimated at xtls and used to perform an update
of the local search individual which is hopefully moved closer to a stationary point.

As an evolution strategy proceeds, it typically does not use the previously evaluated
points beyond the current generation; however, in our hybrid strategy we store the last
N points and their evaluated functions values in a database. In practice, if the objective
function is very expensive to evaluate, we might use all of the previously evaluated points.
To update the local search individual we use a k-nearest neighbor local function approx-
imation of the objective function using the k nearest neighbors (Euclidean distance) of
xtls in the database to construct a cubic radial basis function (RBF) approximation:

s(x) =
k∑
i=1

wiφ (‖x− xi‖2) + p(x), x ∈ Rn (1)

where xi, i = 1, 2, . . . , k are the k nearest neighbors of xtls in the n-dimensional search

space, p is in Πn
2 (the linear space of polynomials in n variables of degree less than

or equal to 2), and φ(r) = r3. Cubic radial basis functions were selected not only for
their simplicity and differentiability, but also because they have been used successfully
as surrogate models for pre-evaluating function values to lessen the number of function
evaluations required by an evolution strategy (Regis and Shoemaker 2004).

Define the matrix Φ ∈ Rk×k by

(Φ)ij := φ (‖xi − xj‖2) , i, j = 1, . . . k. (2)
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Let n̂ = (n+ 1)(n+ 2)/2 be the dimension of Πn
2 , let p1, . . . , pn̂ be a basis of this linear

space, and define the matrix P ∈ Rk×n̂ as follows:

Pij := pj(xi), i = 1, . . . , k; j = 1, . . . , n̂. (3)

In this model, the RBF that interpolates the points (x1, f(x1)), . . . (xk, f(xk)) is ob-
tained by solving the system (

Φ P
P T 0

)(
w
c

)
=

(
F
0n̂

)
(4)

where F = (f(x1), . . . , f(xk))
T , w = (w1, . . . , wk) ∈ Rk and c = (c1, . . . , cn̂)T ∈ Rn̂.

Powell (1992) gives sufficient and necessary conditions for the system above to be uniquely
solvable, but in practice the real issue can be that the coefficient matrix above becomes
ill-conditioned. However, we have found that simply rescaling and shifting the points
x1, . . . , xk so that they all lie in [−1, 1]n is usually sufficient to address this issue.

Once the RBF, s(x), has been determined by Eq.(1), then s(x) is differentiated analyt-
ically to determine approximations to the gradient and Hessian of the objective function,
f(x). For the gradient vector, g, evaluated at the local search individual, xtls:

gi =
(
∇f(xtls)

)
i

=
∂

∂xi
f(xtls) ≈

(
∇s(xtls)

)
i

=
∂

∂xi
s(xtls), i = 1, . . . , n (5)

For the Hessian matrix, H, evaluated at the gradient individual, xtls:

Hij =
(
H(xtls)ij

)
=

∂2

∂xi∂xj
f(xtls) ≈ ∂2

∂xi∂xj
s(xtls), i, j = 1, . . . , n (6)

Similar techniques for derivative approximation are routinely used in the numerical so-
lution of partial differential equations using so-called meshless methods. Moreover, such
approximations can be spectrally accurate (faster than polynomial in the grid size) de-
pending on the selection of interpolation points (Fornberg et al. 2009).

Once the offspring and their function values from the current generation have been
appended to the database, we construct the RBF as above and determine the gradient
and Hessian approximated at the current local search individual xtls. Finally, a new local
search individual is found by the standard update:

xt+1

ls
= xtls −H

−1g. (7)

The new local search individual is then added to the current generation of offspring
for possible selection. When the population, and hence the points in the database, are
sufficiently close to a minimum then the gradient and Hessian can be accurate and can
yield fast local convergence to the minimum. However, when the evolving population is
far from a local minimum, then the gradient and Hessian tend to be inaccurate and the
update does not lead to a minimum. In such cases, xt+1

ls
, is typically not selected as an

offspring by the evolutionary strategy and thus does no harm to convergence of the gloal
search.

This method of gradient-based search is similar to a quasi-Newton method, but in
quasi-Newton methods the first derivatives of the function are usually available (or ap-
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proximated by centered finite differences), and the Hessian matrix is updated iteratively
with information from new function and gradient evaluations. In fact, the original evo-
lution strategy hybrid approaches of Tahk et al. (2007, 2009) used the quasi-Newton
method to advance their gradient individual. In contrast, in this proposed approach, the
Hessian matrix is completely recomputed at each generation from a local approximation
to the objective function. In the next subsection we give a synthetic numerical compari-
son to demonstrate that the numerical accuracy of our method and that of Tahk et al.
(2009) are comparable. The main difference in the methods is that, due to the use of the
function approximation model for derivative calculation, our algorithm does not require
symmetrizing the population and thus can be used to estimate derivatives and add local
search to any population-based search algorithm.

The local search technique proposed here could easily be modified so that the local
search individual is not simply the approximate Newton point. For instance, because
we have the local function approximation available, the local search individual could be
the result of a trust region search of the radial basis function along the Newton update
direction similar to the approach described by Wild et al. (2008). In fact, any kind of
local search algorithm that utilized primarily the previously collected points could be
used to find the local search individual.

2.1. A numerical comparison

To demonstrate the capability of the radial basis function approach to approximating
derivatives the 10-dimensional generalized Rosenbrock function (see Table 2) is used as
a test-case. To facilitate a direct comparision with the Hessian approximation approach
described by Tahk et al. (2009) the following synthetic numerical experiment was con-
ducted.

The global minimizer of the Rosenbrock function is the point 1 consisting of all ones.
A synthetic sequence of points was selected that converges toward the global minimizer
at a constant rate:

x(i) = 1 + 0.01
100− i

100
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), i = 1, . . . , 100 (8)

At each iteration a population, from a normal distribution as in an evolution strategy,
of λ = 80 points is generated around x(i) in two steps. In the first step, µ = 40 points
are generated by:

x = x(i) + 0.01z, (9)

where z is selected from the 10-dimensional standard normal distribution with mean
0 and variance 1. In the second step, 40 additional points are generated by reflecting
the first 40 points through the center point x(i) - this center point will serve as the
linearization point for each iteration and the method proposed by Tahk et al. (2009)
utilizes the reflected points to produce higher order approximations to the gradient and
Hessian. The Rosenbrock function is evaluated at the 81 points and the points and
function values are stored in a database for use by our radial basis function approach.

We do not present the details of the approach of Tahk et al. (2009) here, but at
each iteration the gradient is approximated by a least squares fit of the centered finite
differences of the symmetric pairs through the linearization point. Moreover, the inverse
Hessian is sequentially updated with the centered difference second derivative information
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from each symmetric pair of points. Utilizing these approximation techniques, at each
iteration we obtain an approximation to the gradient and inverse Hessian: gTahk and

H−1

Tahk
, respectively.

At each iteration two different approximations to the stationary point are computed.
The first is the from the approximation due to Tahk et al. (2009):

x
(i)

Tahk
= x(i) + hTahk = x(i) −H−1

Tahk
gTahk. (10)

The second approximation uses the nearest k = 132 points from among the last N = 264
points stored in the database to compute the radial basis function approximations to the
gradient and Hessian approximations described in equations (5) and (6); we label these
grbf and Hrbf, respectively.

x
(i)

rbf
= x(i) + hrbf = x(i) −H−1

rbf
grbf. (11)

We compare the update vectors hTahk and hrbf to the analytically computed update
vector in Figure 1(a). For the first 50 iterations the hTahk is a better approximation to
the analytically computed update vector than computed by radial basis functions, but
for iterations 51–100 the approximations are comparable. Even though hrbf is not always
the most accurate approximation to the update vector, it turns out that it does provide
a good search direction. Figure 1(b) shows the distance from each of the approximated

stationary points, x
(i)

Tahk
and x

(i)

rbf
, as well as the analytically computed Newton point, to

the global minimum of the 10-dimensional Rosenbrock function. It can be seen that the
radial basis function approximation local search individuals and the Tahk et al. (2009)
gradient individuals give comparable approximations to the global minimizer in spite of
the fact that hrbf is sometimes a less accurate approximation to the true update vector
(from the analytic derivatives) than that of hTahk. In both plots, it can be seen that the
radial basis function local search individiual is occasionally quite a bad approximation
to the global minimum. This appears to happen because the problem of radial basis
function interpolation and derivative interpolation is ill-conditioned and very sensitive
to the choice of interpolation points. In most generations our simple choice of nearest
neigbor points is adequate, but not always. This will be the subject of future work.

The radial basis function approach to computing the local search individual is the
more expensive algorithm, but can be adapted to be used with any population based
algorithm as it requires no modification of the underlying sampling algorithm. This
makes the radial basis function approach suitable to be used with the covariance matrix
adaptation evolution strategy as will be described in the next section.

3. Covariance Matrix Adaptation Evolution Strategy with Local
Search Individual

The basic outline of the hybrid evolution strategy algorithm is illustrated by the flowchart
in Figure 2. To study the efficacy of this version of our hybridized approach we have
implemented the algorithm in the context of CMAES. While we have also done this in
the context of the standard evolution strategy, we use CMAES here because it seems
to have better global convergence properties (Hansen and Kern 2004, Hansen 2009). In
particular, we utilize the Matlab version of CMAES (version 2.54) provided publically



October 15, 2010 16:39 Engineering Optimization GI˙paper1˙2010˙last

7

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

N
or

m
 d

iff
er

en
ce

 e
si

m
at

ed
 a

nd
 e

xa
ct

 u
pd

at
e 

ve
ct

or
s

 

 
Tahk−GI
RBF−LSI

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

D
is

ta
nc

e 
be

tw
ee

n 
se

ar
ch

 in
di

vi
du

al
 a

nd
 g

lo
ba

l m
in

 

 
Exact Newton
Tahk−GI
RBF−LSI

(b)

Figure 1. Comparison of rbf local search and Tahk local search for 10-dimensional Rosenbrock
function. Figure (a) compares the update vectors for the two methods; Figure (b) shows that the
distance from the approximated stationary point to the global minimizer is comparable for the two
methods.
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Figure 2. Flowchart for the hybrid evolution strategy algorithm

by Hansen (2004).
CMAES is an evolution strategy that adapts a full covariance matrix of a normal

search distribution (Hansen and Ostermeier 1996). The strategy begins with an initial

population of λ individuals x
(0)
k=1:λ. After evaluating the objective function, the best µ

individuals are selected as parents and their centroid is computed by using a weighted

average: 〈x〉(0)W =
∑µ

k=1wkx
(0)
k:λ, where the weights, wi, are positive reals and sum to

one. The notation xk:λ is called selection notation and represents the point with the kth

lowest corresponding objective fitness value. While many weighting schemes have been
proposed, here we use the super-linear weights: wi = ln(µ)− ln(i), i = 1, . . . , µ, wherein
the individuals with lowest fitness values get the highest recombination weights.
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After selection and recombination a new population is created by:

x
(t+1)
k=1:λ = 〈x〉(t)W + σ(t)B(t)D(t)zk=1:λ (12)

where zk ∼ N(0, I) are independent realizations of an n-dimensional standard normal
distribution with mean zero and covariance matrix I. The base points, zk, are rotated
and scaled by the eigenvectors, B(t), and the square root of the eigenvalues ,D(t), of
the covariance matrix ,C(t). The covariance matrix, C(t), and global step size, σ(t), are
updated after each generation. This approach yields a strategy that is invariant to any
linear transformation of the search space. Equations for initializing and updating the
strategy parameters are given in (Hansen and Kern 2004). For complete details on the
CMAES algorithm the tutorial (Hansen 2010) is a definitive source.

Table 1. Pseudo-code of the hybrid algorithm.

1: Generate and evaluate initial population x
(0)
k=1:λ

2: Append these points to the database

3: Choose best individual and set x
(0)

ls
4: Set t = 0, g0 = 0n×1, H0 = C(0) = In×n
5: repeat
6: Compute nearest neighbor RBF and find gt and Ht

7: Update the local search individual x
(t+1)

ls
= xls − (Ht)

−1gt

8: Evaluate x
(t+1)

ls
and append to the database if feasible

9: Select the best µ individuals from the population and x
(t+1)

ls
10: Generate new population x

(t+1)
k=1:λ by recombination and mutation

11: Evaluate new population and append to database.

12: if mini f(xi) < f(x
(t)

ls
) then

13: swap individual with lowest function value and x
(t)

ls
14: end if
15: t = t+ 1
16: until Stopping criteria are satisfied

Pseudo-code for the CMAES-RBFLSI algorithm is shown in Table 1. One additional
feature that has not been mentioned is that a weighted norm is used to compute nearest
neighbors for determining the support of the local radial basis function approximation.
We use the current covariance matrix of the CMAES since it should reflect the shape
of the search distribution and the objective function surface. The eigenvector/eigenvalue
decomposition of the current covariance matrix is C = BD2BT . The distance between a
point x ∈ Rn and the current gradient individual xls is measured as ‖(BD)−1(x−xls)‖2.
(For instance, a unit ball in this norm will be elliptically shaped to fit in a long narrow
valley in the search space.) The nearest neighbors in this norm should be ideal points for
constructing an approximation to the Hessian matrix.

4. Hybrid Algorithm applied to mathematical test suite

A small suite of test problems has been selected to compare the performance of our hybrid
CMAES local search individual algorithm (CMAES-RBFLSI) with ordinary CMAES.
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Our aim is to establish that the hybridized approach does not change the global conver-
gence properties of CMAES while accelerating the local convergence rate. For compari-
son, we have also implemented the quasi-Newton Hessian-approximation gradient indi-
vidual approach of Tahk et al. (2009) in the context of CMAES (their implementation was
in the standard evolution strategy); we refer to this implementation as CMAES-QNGI.

In CMAES-QNGI, after recombination (finding the centroid of the selected parents),
only the first half of the new population of individuals is generated by equation (12). After
evaluating the objective function for these individuals, the current gradient individual
is swapped for an individual with lower objective function value, if one exists, to ensure
that the gradient individual is the current best point. The remainder of the current
population is formed by reflecting the first half of the population symmetrically through
the gradient individual in Rn. This symmetrically selected population reduces the order
of the discretization errors in forming the first and second derivative approximations at
the gradient individual.

A summary of the selected test functions is shown in Table 2. Function f1 is the
quadratic Schwefel 1.2 function and is a test case for CMAES because its elliptical con-
tours test the ability of the algorithm to adapt the shape of the search distribution. f2
is the cone function selected for its lack of differentiability at the minimum. f3 is the
classical generalized Rosenbrock function which has two minima for n ≥ 4 and the long
narrow valley which slows convergence for many algorithms. f4 is the Schwefel 1.5 func-
tion which, while unimodal, is not differentiable if any xi = 0, i = 1, . . . , n. The Griewank
function f5 is multimodal, but is not particularly challenging for CMAES and is smooth.
The Rastrigin function, f6, is multimodal and smooth and is a difficult problem for
CMAES (Auger and Hansen 2005). Finally, the Ackley function, f7, is multimodal and
smooth except at the minimum and is somewhat challenging in larger dimensions for
CMAES.
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Table 2. Test Functions for Hybrid Optimization Strategy

Name Definition Search Domain

Schwefel 1.2 f1(x) =

n∑
i=1

 i∑
j=1

xj

2

[−40, 60]n

Cone f2(x) =

(
n∑
i=1

x2i

)1/2

[−40, 60]n

Rosenbrock f3(x) =

n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
[−40, 60]n

Schwefel 1.5 f4(x) =

n∑
i=1

|xi|+
n∏
i=1

|xi| [−40, 60]n

Griewank f5(x) = 1 +
n∑
i=1

x2i
4000

−
n∏
i=1

cos

(
xi√
i

)
[−600, 600]n

Rastrigin f6(x) = 10n+
n∑
i=1

n∑
i=1

(
x2i − 10 cos (2πxi)

)
[−40, 60]n

Ackley f7(x) = −20 exp

−0.2

√√√√ 1
n

n∑
i=1

x2i

 [−32, 32]n

− exp

(
1
n

n∑
i=1

cos (2πxi)

)
+ 20 + e

We examine only the convergence graphs to compare the algorithms. The CMAES-
RBFLSI algorithm is expensive since it constructs the local radial basis function approx-
imation at each generation based on O(n2) points using a naive linear solver that requires
O(n6) operations. The solution time of (4) can be improved by using a null space method
or iterative methods, but the presumption here is that the objective function evaluations
are very expensive. Thus local search algorithms, even expensive ones, can and should
be used to improve the efficiency of the overall search.

Figures 3-9 shows median convergence graphs based on a set of 30 trials for each of
the test functions for each of the three algorithms: CMAES, CMAES-RBFGI, CMAES-
QNGI. In each figure the results for dimension n = 10 are shown in plot (a), and the
results for dimension n = 30 are shown in plot (b). We do not show the results of
CMAES-QNGI at n = 30 since that algorithm does not perform well as will be discussed
further below. For n = 10, the population size λ = 30 with µ = 15 parents being selected
at each generation, while with n = 30 we use λ = 80 and µ = 40.. The initial global
step size, σ is set to 30% of the total length of the search domain in each dimension.
The initial population is sampled from a uniform distribution, and the same samples
are used to initialize each of the three algorithms. For the CMAES-RBFLSI algorithm,
the local RBF approximation is constructed using the k nearest neighbors with k =
(n + 1)(n + 2) which is twice the minimum number of points necessary to construct
a quadratic polynomial interpolant in Rn. The k nearest neighbors are selected from
among the last N = 2k individuals that have been evaluated. The algorithm is stopped
when a minimum objective function value of 10−10 is reached or when the best objective
function value does not change for the last 10 + 30n/λ generations or when the ratio
of the range of the current function values to the maximum current function value is
below TolFun= 5× 10−10. The maximum number of function evaluations was set to be
n× 104.

Several points can be made upon inspection of the convergence graphs in Figures 3-9.
First, the approach of Tahk et al. (2009) appears to interfere with the convergence of



October 15, 2010 16:39 Engineering Optimization GI˙paper1˙2010˙last

11

0 1000 2000 3000 4000 5000 6000
10

−10

10
−5

10
0

10
5

evals

m
ed

ia
n 

f 1

 

 
CMAES
CMAES−RBFLSI
CMAES−QNGI

(a)

0 0.5 1 1.5 2 2.5

x 10
4

10
−10

10
−5

10
0

10
5

evals

m
ed

ia
n 

f 1

 

 
CMAES
CMAES−RBFLSI

(b)

Figure 3. Convergence graphs for, f1, the Schwefel 1.2 quadratic, unimodal function in 10 (a) and
30 (b) dimensions. Convergence is nearly instantaneous for CMAES-RBFLSI once enough points
are obtained for an interpolant.
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Figure 4. Convergence graphs for, f2, the cone function in 10 (a) and 30 (b) dimensions. The cone
function is unimodal, but not differntiable at the minimum. Speedup is neglible.

CMAES. This does not seem to be a case of simple error in implementing their strategy
as we have been able to successfully implement and test it in the context of a standard
evolution strategy; results not shown here. Rather the symmetrization of the population
at each generation seems to interfere with the covariance matrix adaptation and/or step
size adaptation algorithm in CMAES. It may be possible to develop a new version of
CMAES which can accomodate the symmetrized population used in CMAES-QNGI, but
that is beyond the scope of the current paper. The RBF local search individual approach
does not have this difficulty since it does not modify the existing population of the
evolution strategy other than simply appending an extra individual to the population.

A second observation is that for simple functions which are sufficiently smooth near
their minima, such as the Schewefel 1.2 quadratic (f1; Figure 3) and Rosenbrock (f3;
Figure 5) functions the CMAES-RBFLSI algorithm requires significantly fewer function
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Figure 5. Convergence graphs for, f3, the generalized Rosenbrock function in 10 (a) and 30 (b)
dimensions. It has two minima and is smooth, but has a long, flat and narrow valley that makes
optimization slow for most algorithms. CMAES clearly benefits from local search as the minimum
is approached.
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Figure 6. Convergence graphs for, f4, the Schwefel 1.5 function in 10 (a) and 30 (b) dimensions. It
is unimodal with the minimum at x = 0, but is not differentiable if any xi = 0, i = 1, . . . , n.

evaluations than standard CMAES. However, when the function is not differentiable at
the minima the speedup due to the proposed algorithm is quite small. The latter is
evident in the cone functon (f2; Figure 4), Schwefel 1.5 function(f4; Figure 6), and even
the multimodal Ackley function (f7; Figure 9).

The hybrid algorithm performs well for multimodal functions as well. For instance, in 10
and 30 dimensions there are significant reductions in the number of function evaluations
for the Griewank function (f5; Figure 7). The Griewank function is a relatively easy
function for CMAES to optimize, but the CMAES-RBFLSI is able converge more quickly
in the vicinity of the smooth global minimum. In fact, in many of the trials, the radial
basis function local search individual is very close to the global minimum very early in
the run, giving rise to the dips in the convergence curves for CMAES-RBFLSI in Figure
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Figure 7. Convergence graphs for, f5, the Griewank function in 10 (a) and 30 (b) dimensions. It is
multimodal and smooth. While the Griewank function is not particularly challenging for CMAES, it
nevertheless is greatly accelerated by inclusion of the local search individual. The radial basis function
search individual often nearly finds the global optimum early in the optimization run giving rise to
the dips in these convergence graphs.
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Figure 8. Convergence graphs for, f6, the Rastrigin function in 10 (a) and 30 (b) dimensions. It is
multimodal and smooth. For this function restarts and population doubling are used; see the text.
This function is difficult for CMAES which rarely finds the global minimum, but CMAES-RBFLSI
is much more reliable.

7. The Rastrign function (f6; Figure 8) is more interesting as the population size needs
to be quite large to locate the global minimum. For this function a population doubling
restart scheme (Auger and Hansen 2005) was used in which the algorithm was restarted
iteratively with population size λk = 2kλ, k = 1, 2, 3, 4, and µ = λk/2. In 10 dimensions
CMAES locates the global minimum in only 5 of the 30 trials, while in 30 dimensions
only 4 of the 30 trials. While with CMAES-RBFLSI, the global minimum is located in
22 or 30 trials in 10 dimensions and in 26 of 30 trials in 30 dimensions. Evidently, the
proposed algorithm is able to more quickly converge to local minima in each restart and
is thus able to use the computational budget more efficiently to find the global minimum.
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Figure 9. Convergence graphs for, f7, the Ackley function in 10 (a) and 30 (b) dimensions. It is
multimodal and not differentiable at the global minimum. For this function restarts and population
doubling are used; see the text.

5. Application to calibration of a watershed model.

To demonstrate the utility of the CMAES-RBFLSI algorithm in a practical setting we
used the algorithm to calibrate HYMOD, a five-parameter conceptual rainfall-runoff
model (see Figure 11), introduced by Boyle (2000). In short, given time series of daily
precipitation (P ) and evapotranspiration (ET ) data the objective is to tune the param-
eters so that the least squares error between the model predicted stream flow time series
and the observed stream flow time series is minimized. Such problems are usually charac-
terized by multiple minima, sometimes unidentifiable parameters and even discontinuities
in the objective function (Duan et al. 1992).

Figure 10. Schematic representation of the HYMOD model; from (Vrugt et al. 2003)

In attempts to parsimoniously represent the salient features of the precipitation-runoff
process in a watershed system, the HYMOD model model structure (Moore 1985) is
characterized by two series of linear reservoirs; in particular, three identical quick and a
single slow response reservoir. The five parameters to be calibrated for the model stream
flow to match the observed stream flow data are: the maximum storage capacity of the
catchement, Cmax; the degree of spatial variability of the soil moisture capacity, bexp;
the factor distributing flow between the two series of reservoirs, Alpha; and the residence
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time of the linear quick and slow reservoirs,Rq andRs, respectively. The hydrologic model
parameters are inferred by adjusting their values until an acceptable level of agreement
is achieved between a set of historical observations of the real world system that the
model represents and their simulated counterparts. In this case, the objective function
is simply the sum of the squared differences between the observed and simulated daily
stream flows.

Three years, October 1, 1948, to September 30, 1951, of daily hydrologic data from
the Leaf River watershed were used for model calibration. This humid 1944 km2 wa-
tershed is located north of Collins, Mississippi. The data, obtained from the National
Weather Service Hydrology Labratory, consist of mean areal precipitation (mm/d), po-
tential evapotranspiration (mm/d), and stream flow (m3/s).

Table 3. Uncertainty ranges of HYMOD model parameters

Minimum Maximum Unit
Cmax 1.000 500.000 mm
bexp 0.100 2.000
Alpha 0.100 0.990
Rs 0.000 0.300 day
Rq 0.000 0.990 day

The CMAES and CMAES-RBFLSI algorithms are each applied to the optimization or
calibration of the HYMOD model for 30 trials. The initial ranges of the parameter values
are shown in Table 3; similar ranges of parameter values are used in model calibration
study in (Vrugt et al. 2003). As for the mathematical test functions discussed above,
the algorithms are initialized with the same uniform initial distributions. We set λ = 10
and µ = 5. Each algorithm stops when TolFun= 5e − 4, as described previously. For
CMAES-RBFLSI the number of nearest neighbors used for the local RBF is k = d1.5(n+
1)(n+ 2)/2e = 23 chosen from the last N = 2k = 46 evaluated points.
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Figure 11. Convergence of CMAES and CMAES-RBFLSI for the HYMOD model.

There are many local minima, but CMAES and CMAES-RBFLSI nearly always
converge to one of two minima x1 = (157.0796, 0.5440, 0.2376, 0.2624, 0.8178) where
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fHYMOD(x1) = 128.5346 or x2 = (146.9868, 0.7165, 0.2416, 0.2619, 0.8313) where
fHYMOD(x2) = 128.6374. The global minimum appears to be at x1 but CMAES
converges to x2 in 28 of 30 trials, while CMAES-RBFLSI converges to the same
minimum in 27 of 30 trials. Evidently, the basin of attraction for the global minimum,
x1, is quite small as both algorithms have trouble finding it. The accelerated convergence
of CMAES-RBFLSI to the local minimum of the HYMOD model is demonstrated in
Figure 11. For each trial the best function value is saved at each generation. The median
function value over the thirty trials minus the value at the local minimum , f(x2),
is plotted versus the number of function evaluations. As Fiure 11 demonstrates, the
increase in convergence speed is quite dramatic: CMAES-RBFGI typically converges
with fewer than half of the objective function evaluations. Though neither algorithm
reliably locates the global minimum, both algorithms give good approximations to
the global minimum that produce adequate approximations to the daily stream flows.
To locate the global minimum reliably, a restart strategy could be used as with the
Rastrigin function above. The RBFLSI method would still accelerate the convergence
significantly.

6. Conclusions

The local search individual hybridization approach for evolution strategies has been
shown to be effective for significantly accelerating the convergence of the covariance
matrix adaptation evolution strategy for functions which exhibit sufficient smoothness
near the minimum. Likewise, it also works with the standard evolution strategy, though
the results are not shown here.

To develop a hybrid evolution strategy using local RBF approximation, as we have
done here, requires very little modification of the actual evolution strategy. The evolving
population itself is not modified, but the additional local search individual is added at
each generation. In the approach of Tahk et al. (2009) the population is chosen symmet-
rically at each generation and, as seen here, this can interfere with the convergence of
CMAES.

Another advantage to this approach is that no minimum population size is required.
In (Tahk et al. 2007, 2009) the population size must be at least twice the dimension of
the search space to estimate the gradient vector. The downside of RBFGI approach is
that it is expensive to form the coefficient matrix in Eq. (4). Moreover, the size of that
system scales as O(n2), so its solution by a direct method requires O(n6) operations
per generation. Thus, there is a trade-off between the computational complexity of the
RBFLSI method and the gain due to fewer function evaluations. For expensive objective
functions the cost of adding a local search individual propagated by local radial basis
function approximation is expected to be incidental and the increase in speed can be
enormous. As a result, the RBFLSI approach should be incorporated into evolution
strategies for expensive functions as it can sometimes greatly increase converge speed
and reliability with little downside.

In a future work we will consider a local search based on a trust region search along the
Newton update direction on the local radial basis function approximation, as in (Wild
et al. 2008) to locate the local search individual. The integration of a more robust local
search may improve the local convergence properties of this hybridization approach.
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